- 1. What is the area of a right triangle whose base has length 9 and whose hypotenuse is 4 greater than the third side?
 - (A) $8\frac{1}{8}$ (B) $12\frac{1}{8}$ (C) $29\frac{1}{4}$ (D) $36\frac{9}{16}$ (E) $42\frac{7}{16}$

Solution. C

Let x be the length of the third side. Then the hypotenuse is x+4. Using the Pythagorean Theorem, we have that $(x+4)^2 = x^2 + 81$. Solving for x yields $x = \frac{65}{8}$. Thus the area is

$$0.5(9)(\frac{65}{8}) = 36\frac{9}{16}.$$

- 2. A bowl contains 100 colored marbles: 26 green, 20 red, 18 blue, 16 yellow, 12 black, and 8 white. What is the smallest number of marbles you must pick to guarantee you have at least 14 of the same color?
 - (A) 14
 - (B) 28
 - (C) 46
 - (D) 60
 - (E) 73

Solution. E

You could get 8 white, 12 black, 13 yellow, 13 blue, 13 red, and 13 green. This gives 72 marbles. The next draw (number 73) is guaranteed to give you 14 of some color.

- 3. Consider the given drawing. Suppose that $0 < \theta < \frac{\pi}{2}$ on a circle of radius 1. Then the ratio of length of \overline{BD} to the length of \overline{CA} is
 - (A) $\sin \theta$
 - (B) $\cos \theta$
 - (C) $\tan \theta$

(D) $\cot \theta$

(E) θ

Solution. B Let $x = \overline{BD}$. Then $\sin \theta = \frac{x}{1}$. So $x = \sin \theta$. Let $y = \overline{CA}$. Then $\tan \theta = \frac{y}{1}$. So $y = \tan \theta$. Then $\frac{x}{y} = \frac{\sin \theta}{\tan \theta} = \frac{\sin \theta}{\frac{\sin \theta}{\cos \theta}} = \cos \theta$.

- 4. Suppose you have a circle of radius r. One fourth of the circle is removed as described in the figure below. The remaining part is made into a cone. Express the height of the cone on terms of the radius r.
 - (A) $\frac{1}{4}r$ (B) $\frac{\sqrt{3}}{4}r$ (C) $\frac{1}{2}r$ (D) $\frac{\sqrt{74}}{r}$ (E) r

Solution. D. The circumference of the original circle is $2\pi r$. If one fourth of the circle is removed then the remaining part of the circumference is $\frac{3}{4}\pi r$. When the cone is created the circumference of the base of the cone is thus $\frac{3}{4}\pi r$. If \tilde{r} represents the radius of the cone, then $2\pi\tilde{r} = \frac{3}{4}\pi r$. Thus $\tilde{r} = \frac{3}{4}r$. Notice that the edge of the cone has length r and the radius of the cone is $\frac{3}{4}r$. Together with the height, these three lengths form a right triangle and thus their lengths satisfy the Pythagorean Theorem. If h is the height of the cone. then $h^2 + (\frac{3}{4})^2 = r^2$. So $h = \frac{\sqrt{7}}{4}$.

- 5.
- (A) (B)
- (C)
- (D)
- (E)

Solution.