BOUNDED GAPS BETWEEN PRIME POLYNOMIALS WITH A
GIVEN PRIMITIVE ROOT

LEE TROUPE

ABSTRACT. A famous conjecture of Artin states that there are infinitely many
prime numbers for which a fixed integer g is a primitive root, provided g # —1 and
g is not a perfect square. Thanks to work of Hooley, we know that this conjecture
is true, conditional on the truth of the Generalized Riemann Hypothesis. Using
a combination of Hooley’s analysis and the techniques of Maynard-Tao used to
prove the existence of bounded gaps between primes, Pollack has shown that
(conditional on GRH) there are bounded gaps between primes with a prescribed
primitive root. In the present article, we provide an unconditional proof of
the analogue of Pollack’s work in the function field case; namely, that given a
monic polynomial g(t) which is not an vth power for any prime v dividing ¢ — 1,
there are bounded gaps between monic irreducible polynomials P(t) in Fg[t] for
which g(t) is a primitive root (which is to say that g(t) generates the group of
units modulo P(t)). In particular, we obtain bounded gaps between primitive
polynomials, corresponding to the choice g(t) = t.

1. INTRODUCTION

Among the most prominent conjectures in number theory is the prime k-tuples
conjecture of Hardy and Littlewood, the qualitative version of which states that
for any admissible tuple of integers H = {hy, ..., hi}, there are infinitely many
natural numbers n such that the shifted tuple n+#H = {n+hy,...,n+hy} consists
entirely of primes. To this day, we do not know of a single admissible tuple for
which the above statement is true.

We can instead ask for something weaker: Can we show that infinitely many
shifts of admissible k-tuples contain just two or more primes? In 2013, Yitang
Zhang stunned the mathematical world by demonstrating that, for every sufficiently
long tuple H, there are infinitely many natural numbers n for which n+ 7 contains
at least two primes, thereby establishing the existence of infinitely many bounded
gaps between consecutive primes [Zhal4]. Zhang’s breakthrough was soon followed
by work of Maynard [May15] and Tao, who independently established that infinitely
many shifts of admissible k-tuples contain m primes, for any m > 2, provided k
is large enough with respect to m. As a consequence, we have not only bounded
gaps between primes, but also that liminf, . ppim — pn < 00 (here p, denotes
the nth prime number).

The Maynard-Tao machinery can be utilized to probe questions concerning
bounded gaps between primes in other contexts. Let ¢ be a power of a prime and
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consider the ring I [t]. We say that an element p of F,[¢] is prime if p is monic
and irreducible. The following theorem, a bounded gaps result for F,[t], is due to
Castillo, Hall, Lemke Oliver, Pollack, and Thompson [CHL*15].

Theorem 1.1. Let m > 2. There exists an integer ko depending on m but
independent of q such that for any admissible k-tuple {hy, ..., hi} C F,[t] with
k > ko, there are infinitely many f € F,[t] such that at least m of f+hy,..., f+hg
are prime.

In particular, if {hq,...,ht} C F,[t] is a long enough admissible tuple, the
difference in norm between primes in F[t] is at most max;<;.;<x |h; — h;|, infinitely
often. (Here |f| = ¢i8/ for f € F,[t].)

Artin’s famous primitive root conjecture states that for any integer g # —1 and
not a square, there are infinitely many primes for which g is a primitive root; that
is, there are infinitely many primes p for which g generates (Z/pZ)*. Work of
Hooley [Hoo67] establishes the truth of Artin’s conjecture, assuming GRH; the
following result due to Pollack [Pol14] is a bounded gaps result in this setting.

Theorem 1.2 (conditional on GRH). Fiz an integer g # —1 and not a square.
Let g1 < g2 < ... denote the sequence of primes for which g is a primitive root.
Then for each m,

lim inf(Qn—i—m—l - qn) S Cma
n—oo
where C,, is finite and depends on m but not on g.

Artin’s conjecture can be formulated in the setting of polynomials over a finite
field with g elements, where ¢ is a prime power. Let g € F,[t] be monic and not an
vth power, for any v dividing ¢ — 1; this is analogous to the requirement that g
not be a square in the integer case. We say that g is a primitive root for a prime
polynomial p € F,[t] if g generates the group (F,[t|/pF,[t])*. In Bilharz’s 1937
Ph.D. thesis [Bil37], he confirms Artin’s conjecture that there are infinitely many
such p for a given g satisfying the above requirements, conditional on the Riemann
hypothesis for global function fields, a result proved by Weil in 1948.

Motivated by the results catalogued above, we presently establish an uncondi-
tional result which can be viewed as a synthesis of Theorems 1.1 and 1.2.

Theorem 1.3. Let g be a monic polynomial in F,[t] such that g is not a vth power
for any prime v dividing g — 1, and let Py denote the set of prime polynomials in
F,[t] for which g is a primitive root. For any m > 2, there exists an admissible
k-tuple {h,...,hi} such that there are infinitely many f € F,[t] with at least m
of f+hi,..., f+ hy belonging to Py.

Remark 1.4. A prime polynomial a € F,[t] is called primitive if t is a primitive
root for a; see [LN97] for an overview of primitive polynomials. Taking g = ¢, we
obtain as an immediate corollary the existence of bounded gaps between primitive
polynomials.

Notation. In what follows, ¢ is an arbitrary but fixed prime power and I, is the
finite field with ¢ elements. The Greek letter ® will denote the Euler phi function
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for F,[t]; that is, ®(f) = #(F,[t]/fF,[t])*. The symbols <, >, and the O and
o-notations have their usual meanings; constants implied by this notation may
implicitly depend on ¢. Other notation will be defined as necessary.

2. THE NECESSARY TOOLS

For a monic polynomial ¢ and a prime polynomial P not dividing a in F[t],
define the d-th power residue symbol (a/P)4 to be the unique element of [F; such
that

o = (%)d (mod P).

Let b € F[t] be monic, and write b = P;* - -- P. Define

<E> _ S (i) €j

b/d ]1;[1 P; ),

We will make use of a number of properties of the d-th power residue symbol. The
following is taken from Propositions 3.1 and 3.4 of [Ros02].

Proposition 2.1. The d-th power residue symbol has the following properties.
(a) (%)d = (a_zf)d if a1 = ag (mod b).

(b) Let ¢ € F}, be an element of order dividing d. Then, for any prime P € F, [t]
with P 1 a, there exists a € F,[t] such that (%)d =C.

We now state a special case of the general reciprocity law for d-th power residue
symbols in F [t], Theorem 3.5 in [Ros02]:

Theorem 2.2. Let a,b € F,[t] be monic, nonzero and relatively prime. Then

(), (2) e

Another essential tool in our analysis is the Chebotarev density theorem. The
following is a restatement of Proposition 6.4.8 in [F.J08].

Theorem 2.3. Write K =F,(t) and let L be a finite Galois extension of K, and
let C be a conjugacy class of Gal(L/K). Let Fyn be the constant field of L/K.
For each T € C, suppose resp,, T = IeSF,, Frob';, where k € N. The number of

unramified primes P of degree k whose Artin symbol <L/TK> 1s C s given by

k k/2
%% +0 (ﬂq—(m +gL)> ,

m k

where m = [L : KF ], g1, is the genus of L/K, and the constant implied by the
big-O 1is absolute.

In our application, the extension L/K will be the compositum of a Kummer
extension and a cyclotomic extension of K = [F,(¢). The next three results will
help us estimate g,.
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We say that an element a € K* is geometric at a prime r # ¢ if K({/a) is a
geometric field extension of K (that is, the constant field of K (y/a) is the same as
the constant field of K'). Proposition 10.4 in [Ros02] concerns the genus of such
extensions; we state it below.

Proposition 2.4. Suppose r # charF, is a prime and K' = K({/a), a € K
nonzero. Assume that a is geometric at r and that a is not an rth power in K*.
With g denoting the genus of K'/K,

29 — 2= =2r+ R,(r — 1),

where R, is the sum of the degrees of the finitely many primes P € K where the
order of P in a is not divisible by r.

Fix an algebraic closure K of K. One can define an analogue of exponentiation
in F,[t]; that is, for M € F,[t] and u € K, the symbol v is again an element
of K. In particular, we have an analogue of cyclotomic field extensions. Define
Ay = {u € K | uM = 0}; then K(Ay)/K is a cyclotomic extension of K, and
many properties of cyclotomic extensions of Q carry over (at least formally) to
this setting. See Chapter 12 of [Sal07] for details of this construction and for
properties of these extensions. The following proposition, a formula for the genus
of cyclotomic extensions of F,(t), is taken from Theorem 12.7.2.

Proposition 2.5. Let M € F[t] be monic of the form M = 1[,_, P, where the
P; are distinct wrreducible polynomials. Then

e(M)

g—1’

29M —2= —2¢(M) + Zdlsl CI)((;\Z?) + (q — 2)

)

where gur is the genus of K(Ay)/K, d; = deg Py, and s; = a;®(P™) — qdi(@i=1),

Finally, if a function field L/k with constant field k is the compositum of two
subfields K;/k and Ks/k, we can estimate the genus of L given the genera of K;
and K using Castelnuovo’s inequality (Theorem 3.11.3 in [Sti09]), stated below.
Proposition 2.6. Let Ki/k and Ky /k be subfields of L/k satisfying

o .= K K5 is the compositum of K1 and K5, and
e [L: K] =n; and K;/K has genus g;, i = 1,2.

Then the genus gr, of L/ K is bounded by

gL < nigi +noge + (1 — 1)(ng — 1).

3. MAYNARD-TAO OVER F(t)

We now briefly recall the Maynard-Tao method as adapted for the function
field setting in [CHL*15]. Fix an integer k > 2, and let H = {hy,..., hx} be
an admissible k-tuple of elements of F,[t] (that is, for each prime p € F,[t], the
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set {h; (mod p) : 1 < i < k} is not a complete set of residues modulo p). Let
W oy Define sums S; and S, as follows:

S; = Z w(n)

neA(q")
n=B (mod W)

- H\p|<log log log(

and

k
Sy = Z (Z xe(n + hl-)) w(n),
n€A(q?) i=1
n=F (mod W)
where A(q%) is the set of all monic polynomials in F,[t] of norm ¢* (i.e., degree
0), P is the set of monic irreducible elements of F,[t|, 8 € F,[t] is chosen so that
(B4 h;, W) =1forall 1 <i <k (such a § exists by the admissibility of ), and

s =( % A)

Ay ydy
di|(n+hi)Vi

for suitably chosen weights Ay, 4,. Suppose Ss > (m — 1)S;, for some integer
m > 2 and some choice of weights; then there exists ng € A(q%) such that at least
m of the ng + hy,...,ng + hi are prime. The goal is to find a sequence of such
no € A(q") as £ — oo. If this can be done, then infinitely often we obtain gaps
between primes of size at most maxy<; j<.izj |hi — byl

For the choice of suitable weights and the subsequent asymptotic formulas for
S1 and Sy, we refer to Proposition 2.3 of [CHL*15], which we restate here for
convenience:

Proposition 3.1. Let 0 < 6 < ; be a real number and set R = |A(q")|°. Let F
be a piecewise differentiable real-valued function supported on the simplex Ry =
{(z1,...,zx) € [0,1)F : S°F 2, <1}, and let

Y OF
Fox = sup |F(t1, ... t)| + ] (t1,. .., tg)].
(tr,.tr) €[0,1] ; Oz;
Set
k 2
pu(ry, ..., k) log |r1] log ||
M :—( u(di>|di|) . F(
o H 7’172-77% [Ti) ©(ri) log R log R
d;|riVi
(r:,W)=1Vi

whenever |dy -+ -dg| < R and (dy -+ - di, W) = 1, and Ay,
the following asymptotic formulas hold:
(1+0(1)2(W)*A(g") (155, log R)*

o log g
51 = (W [F+1 L,(F)

4, = 0 otherwise. Then

-----
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and
1+ o(1))®(W)FA(q")| (== log R)**1 *
52:( ( ))1( 1)4|e( ){Lilokgfl g ) S ),
(log |A(g")])[W] oot
where
I(F) :// F(xy,...,o)%dsy ... dxy,
Rk
and
1 2
J]gm)(F) = / . / (/ F(xl, ce ,$k>d$m) dl’l e dIm,1d$m+1 e d.fllk
(0,111 \Jo
(m)
By the above proposition, as ¢ — oo, Ss/S; — HW. Set

— sup Sommr A (F)
My, : s%p To(F) ,
where the supremum is taken over all F' satisfying the conditions of the Proposition
3.1. Following Proposition 4.13 of [May15], we have M > logk — 2loglogk — 2
for all large enough k. In particular, M} — oo, so upon choosing k large enough
depending on m (and choosing F' and # appropriately), we obtain the desired result
for any admissible k-tuple H.

For the present article, we fix g satisfying the conditions of Theorem 1.3 and
modify the above argument as necessary; our modifications are somewhat similar
to those in [Poll4]. Given an admissible k-tuple H = {hq, ..., hi}, the set gH =
{gh1,...,ghy} is again admissible. We work from now on with admissible k-tuples
‘H such that every element of H is divisible by g. Set

W :=lcm | g, H P

Ip|<logs(g®)

With A(q") defined as above, we will insist that ¢ is prime; this will be advantageous
in what follows. We again search among n € A(q") belonging to a certain residue
class modulo W, but we must choose this residue class more carefully than in the
original Maynard-Tao argument; that is, we choose this residue class so that primes
detected by the sieve will have g as a primitive root.

Lemma 3.2. We can choose a € F,[t] such that, for any 1 <i <k and for any
n =« (mod W) with deg(n) odd,

e n+ h; is coprime to W, and

g *
° ("+hi>q1 generates .

Proof. Fix a generator w € F;. Suppose deg(g) is even. Write g = p{' -+ p[r with
p; irreducible for each i. Since g is not an vth power for any v | ¢ — 1, the numbers
fi,---, fryq — 1 have greatest common divisor equal to one. Hence, we may write

1:blf1+-'~+brfr+br+1(q_1)
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for some integers b; not all zero. Thus

w = wblfl“l’u-“l’br‘fv“‘l’br-!—l(q*l) — wb1f1++b7‘f'r

b

Now, for each 1 < i < r, w” is an element of F; of order dividing ¢ — 1. By

Proposition 2.1b, for each such i there exists a; € F,[t] with (a;/p;)—1 = wW¥;
and by the Chinese remainder theorem, we can replace each a; in the system of

congruences above by a single element a € F,[t]. So, by definition,
0. M), i
— = — =||w" =w.
9/ q-1 I \PiJ g1

(note that all polynomials here are monic). Choose « so that & = a (mod g) and
(a+ h;,W/g) =1 for all h; € H; such an « can be chosen by the admissibility of
‘H. Then by Proposition 2.1a, for all n = « (mod W), we have

(2) B (oz—i—hi) B (n—i—hi)
g qg—1 g qg—1 g qflj

recalling that all h; € H are divisible by ¢g. According to Theorem 2.2,

(n + hz) — (—1)deg(n+hi)deg(9) (L) = ( g ) s
9 /e nAh g A

so that (-5-),-1 generates F; as desired. If deg(g) is odd, so that the factor of —1

remains on the right-hand side of the above equation, repeat the argument with
—w in place of w. O

Let o € F,[t] be suitably chosen according to Lemma 3.2. Define
51 = Sl
and

Sp= Y (Z xe, (n + hz‘)) w(n).

neA(q®)
n=a (mod W)

(So S is just Sy with P replaced with P,.) Our theorem follows immediately from
the following proposition.

Proposition 3.3. We have the same asymptotic formulas for Sy and Ss as we do
for Sy and S in Proposition 3.1.

If we can establish Proposition 3.3, Maynard’s argument to establish the existence
of bounded rational prime gaps can be used to obtain Theorem 1.3.
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4. PROOF OF PROPOSITION 3.3

This proof follows essentially the same strategy as Section 3.3 of [Poll4]. Since

SH =51, we need only concern ourselves with 52. We can write 52 = Z;Zl S’ém),
where

Sim = Z Xe, (1 + b )w(n).
neA(q")
n=a (mod W)
The proof of Proposition 3.1 (which refers to Maynard’s analysis) shows that, for
any m,
p(W)FA(¢")] (5, log R)*

log g (m)
Wilogg b )

S5~

To establish Proposition 3.3, it would certainly suffice to prove that the difference
between Sém) and Sém) is asymptotically negligible, i.e., that as £ — oo through
prime values,

(1) Som _ gim _ (@(W)’“IA(Q“)KlOg qf)’“) |

|W|k+1

We now focus on establishing (1) for each fixed m.
For prime r dividing ¢* — 1, let P, denote the set of all irreducible polynomials
p € A(q") satisfying
P

g =1 (mod p).

We have the inequality
0<xp—xe, < > X
rlgf~1

for any argument which is not an irreducible polynomial dividing g, and it follows
that

(2) 0<sy™ =8 <N > xp(n+ hw(n).

rlg=1  neA(q")
n=a (mod W)

We will show that this double sum satisfies the asymptotic estimate in (1).
First note that primes r dividing ¢ — 1 make no contribution to the sum. Indeed,
suppose 1 | ¢ — 1 and p := n + h,, is detected by the sum. Then

q—1

159"[?15@) :(g) N
p). \p/),a

So (g/p)g-1 does not generate F;, and this contradicts the choice of the residue
class o (mod W).
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Upon expanding the weights and reversing the order of summation, the right-
hand side of (2) becomes

(3) YD Madee D, xp(nt hy).

rlgt—1d1,....dg n€A(qb)
rfg—1 €1r€k n=a (mod W)
[di,ei]\n+hiVi
By definition of the A terms, the {d;} and {e;} that contribute to the sum are
precisely those such that W, [dy,e1],. .., [dk, ex] are pairwise coprime. Thus, the
inner sum can be written as a sum over a single residue class modulo M :=
w Hle[di, e;]. We will also require that n + h,, is coprime to M (otherwise, it will
not contribute to the inner sum), which occurs when d,, = e, = 1.
With this in mind, we claim

1 4
4 > n+ hy) = = 1+ 0(¢"?).
neA(q")
n=a (mod W)
[di,ei]|n+hiVi

Indeed, suppose p := n + h,, is detected by xp.. Then p belongs to a certain
residue class modulo M, and g is an rth power modulo p. Write K = [F,(¢). The
former condition forces Frob, to be a certain element of Gal(K (Ay)/K), and the
latter condition is equivalent to p splitting completely in the field K (., y/g), where
G- is a primitive rth root of unity. Let L := K (¢, Aar, /g). If K(Ay)/K and
K (¢, v/9)/ K are linearly disjoint extensions of K, then the above conditions on p
amount to placing Frob, in a uniquely determined conjugacy class C of size 1 in
Gal(L/K).

To see that K (Ay)/K and K (¢, v/g)/K are linearly disjoint extensions of K,
first note that since £ is prime, our conditions on 7 imply that the order of ¢ modulo
r is equal to ¢. In particular, this means r > ¢. Then since g is fixed while ¢ (and
thus 7) can be taken arbitrarily large, we can say that ¢ is not an rth power in K.

The extension K (y/g)/K is not Galois, since the roots of the minimal polynomial
t" — g of /g are {¢;y/g}i_,, where ¢, is a primitive rth root of unity. If all of these
roots are elements of K, then K must contain all rth roots of unity, implying that
r | ¢ — 1, contradicting the conditions on the sum over values of r above. Thus
K(y/9) € K(Anr), as K(Ajy) is an abelian extension of K, and hence any subfield,
corresponding to a (normal) subgroup of Gal(K (Ayr)/K), is Galois. By a theorem
of Capelli on irreducible binomials,

(K (g, Am) = K] = [K(/g, M) - K(Aw)][K (M) = K] = r®(M).
So we see that K(y/g) and K (Aj) are linearly disjoint extensions of K.

For what follows, we need that K (y/g, Ayr)/K is a geometric extension of K (i.e.,
that IF, is the full constant field of K(y/g,Ays)). By Corollary 12.3.7 of [Sal07],
K (Ay)/K is a geometric extension of K, so it is enough to show that the extension
K(y/g,Aar)/ K (Anr) is also geometric. This follows from Proposition 3.6.6 of [Sti09],

provided we have that " — g is irreducible in K FQ(A ). The previous paragraph
shows that ¢ is not an rth power in K (Ajy), so Capelli’s theorem tells us ¢ — g is
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irreducible in K (Ays). Now, KF,(Ay/) is a constant field extension of K (Ayy), the
compositum of K (Ay) and F, say. Thus, KF,(Ay)/K is an abelian extension of
K, as it is the compositum of two abelian extensions of K. If " — g factors in this
extension, then once again by Capelli, KF,(Ay/)/K must contain an rth root of g;
but this is impossible, by the argument of the previous paragraph. This establishes
the claim.

Let K’ denote the constant field extension K((.) of K; then according to
Proposition 3.6.1 of [Sti09], we have [K'(Ayr, v/9) : K'] = r®(M), and hence

[L:K]|=[L: K'|[K':K]=[K'(Au,/9): K'|[K': K] =r®(M)¢,

using Proposition 10.2 of [Ros02] to determine [K’ : K| = ord,(r) = ¢ (here ord,(r)
denotes the multiplicative order of ¢ modulo 7). Thus K (¢, y/g) and K(Ay,) are
linearly disjoint Galois extensions of K with compositum L, as desired.

We are nearly in a position to use Theorem 2.3 to estimate the sum in (4). If
7 € C, the map 7 fixes K((,, y/g)/K, and in particular restricts to the identity
map on F e, the constant field of K (¢, y/g). Now for any a € F,¢, we have

Frobf](a) =a' =a(a’ ") =aq,
and so the restriction condition of Theorem 2.3 is satisfied. The sum in question is

therefore equal to

¢ /2

(5) T(P(lM)qZ +O(T(I>(1M)q7(rq)(M> +gL)>‘

Let g; and g, denote the genus of K'(y/g)/K’ and K'(Ay)/K', respectively. By
Proposition 2.6,

gr < ®(M)gy +rge + (P(M) — 1)(r — 1).

Recalling that K(y/g)/K is a geometric extension, it follows from Proposition
2.4 that g; < r, with the implied constant depending on g. For gs, we refer to
Proposition 2.5, which states that

o(M)

- (M
2g2 — 2= _2(I)(M) -+ Zdzszﬁ + (q — 2)q_—1,
=1 ?

where M = [[_, P/ (with the P; distinct irreducible polynomials), d; = deg P,
and s; = o ®(P) — ¢%(@~1). At any rate, the middle sum is

v

< d(M) Zdiai = (M) Z a; deg(P) = ®(M) deg(M).

The first and third terms are clearly O(®(M)), and thus g, < r®(M)log|M].
Inserting this estimate into (5), we obtain that the number of primes p detected
by the sum in (4) is

1 q£/2

T T (r®(M) + 19 (M) log yMy)).
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Recall that M =W Hf:l[di, e;]. Owing to the support of the weights A\, we have
| T1[d:, es]| < R?, and hence

k
log [M| = log (W[ T |[d:, ]|) = log [W| +log(R?)
=1

< log |[W| +1log(¢*) < ¢,

recalling that W =] ciog10g10g(qt) P- Therefore the error term in (6) is O(q"?), as
claimed.
Inserting the above into (3), we produce an O-term of size

to(E )5 o)

rlgt—1 di,...,dg
€1, sCh
2
< q€/2 log(qé - 1))‘?nax< Z Tk(s))

< ¢"% .0 R*(log R)*,

and this is o(¢") since R = ¢% where 0 < § < 1/4.
We now focus on the main term:

N ¢ N Miedder
" (er)mm 2 T w(dnel)

rlgt— di,....dg
qu—l €1,---,€k
where the ' on the sum means that [dy,eq],..., [dk, ex], and W are all pairwise

coprime. Recalling the support of the weights A, this is equivalent to requiring that
(di,ej) =1 forall 1 <i,j <k with ¢ # j. We account for this by inserting the
quantity >, 5. . #i(si;), which is 1 precisely when (d;, e;) =1 and is 0 otherwise.
Define a completely multiplicative function g such that g(p) = |p| — 2 on prime
polynomials p; note that

1 1
o([d,ei])  D(di)@(e;) > ).

ug|d;,e;

Therefore, the primed sum above is equal to

© 3 (Tow) X (1 wto)) 3 pptesdese

UL yeyly  4=1 81,250 8k—1,k  154,j<k di,...,dg
i1#£j €1,...€L
w;i|d;,e; Vi

si,jldi e Vit]
dm=em=1
where the double-prime indicates that the sum is restricted to those s; ; which
contribute to the sum, i.e. those coprime to w;,u;, s;,, and s ; for all a # j and

b i.
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Define new variables

Then we can rewrite (8) as

Z (ﬁg(uz)> Z” ( H ,u(sm-)>><

Ulyyug =1 $1,25--8k—1,k  1<4,5<k
i#£]
k k
u(ai)><H u(bj)> (m)  (m)
ya @ y ?
<i|:|1 9(%’) = g(bj) 150k Ib1,..0,bk

where a; = u; H#i si; and b; = u; Hi# s;;. Recombining terms, we see that this
is equal to

k
o X (I5E) S (I i,

Let yl(n”;X ‘= maX,, . \y,(fln)rk| and note that yﬁﬂl < % log R; this follows from

Lemma 2.6 of [CHL*15]. Using again the fact that r > ¢, we have

1 1 )
> - < y#{primes pip |t =1} =o(1),
rlg‘~1
rtg—1

using the standard result that the number of distinct prime divisors of a natural

. 1
number n is < lo&f’ﬁj gn.

Putting everything together, we see that (7) is
k-1 k(k—1)
1\ ¢ p(u)? fu(s)? (m) )2
<< - ymax
( 2 7") (e(W) ( KZR g(u) Z 9(s)? (o)
(u,W)=1

rlgt—1
- ( Z 1) ¢ <¢)(W)>k+1(logR)k+l
r ] (W) \ W]

rfg—1
rlgf—1

rtg—1
D(W)k
— 0 O\ k

as desired.
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5. AN EXAMPLE: PRIMITIVE POLYNOMIALS OVER [Fy

We conclude by calculating an explicit bound on small gaps between primitive
polynomials over Fy. Referring to the remark after Theorem 1.3 in [CHL*15],
any admissible 105-tuple H of polynomials in Fy[t] admits infinitely many shifts
f+H, f € Fylt], containing at least two primes. Let H be a collection of 105
prime polynomials in Fy[t] of norm greater than 105 (that is, of degree at least
seven); it is easy to see that H is admissible. By Gauss’s formula for the number of
irreducible polynomials of a given degree over a finite field, there are 104 irreducible
polynomials of degree seven, eight or nine over Fy, so take H to be a 105-tuple of
primes of degree at least seven and at most ten.

To apply our method, we require in general that each element of H be a multiple
of the given primitive root ¢, and we may modify an admissible tuple H to obtain
an appropriate admissible tuple by replacing each h € ‘H by gh. In the present
case, with g =t and H the 105-tuple described above, this operation results in an
admissible 105-tuple ‘H of polynomials of degree at least eight and at most eleven.
Thus, with this choice of H = {hq, ha, ..., hios}, one finds that there are infinitely
many gaps of norm at most N between primitive polynomials, where

N < max |h; — hj| < 2" =2048.
1<i#£5<105

For other choices of g and ¢, this construction produces a bound of the form
deg(g)+10
q .
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