ORDERS OF REDUCTIONS OF ELLIPTIC CURVES WITH MANY AND FEW PRIME FACTORS

LEE TROUPE

ABSTRACT. In this paper, we investigate extreme values of $\omega(\#E(\mathbb{F}_p))$, where E/\mathbb{Q} is an elliptic curve with complex multiplication and ω is the number-of-distinct-prime-divisors function. For fixed $\gamma > 1$, we prove that

$$\#\{p \le x : \omega(\#E(\mathbb{F}_p)) > \gamma \log \log x\} = \frac{x}{(\log x)^{2+\gamma \log \gamma - \gamma + o(1)}}$$

The same result holds for the quantity $\#\{p \leq x : \omega(\#E(\mathbb{F}_p)) < \gamma \log \log x\}$ when $0 < \gamma < 1$. The argument is worked out in detail for the curve $E : y^2 = x^3 - x$, and we discuss how the method can be adapted for other CM elliptic curves.

1. INTRODUCTION

Let E/\mathbb{Q} be an elliptic curve. For primes p of good reduction, one has

$$E(\mathbb{F}_p) \simeq \mathbb{Z}/d_p\mathbb{Z} \oplus \mathbb{Z}/e_p\mathbb{Z}$$

where d_p and e_p are uniquely determined natural numbers such that d_p divides e_p . Thus, $\#E(\mathbb{F}_p) = d_p e_p$. We concern ourselves with the behavior $\omega(\#E(\mathbb{F}_p))$, where $\omega(n)$ denotes the number of distinct prime factors of the number n, as p varies over primes of good reduction. Work has been done already in this arena: If the curve E has CM, Cojocaru [Coj05, Corollary 6] showed that the normal order of $\omega(\#E(\mathbb{F}_p))$ is log log p, and a year later, Liu [Liu06] established an elliptic curve analogue of the celebrated Erdős - Kac theorem: For any elliptic curve E/\mathbb{Q} with CM, the quantity

$$\frac{\omega(\#E(\mathbb{F}_p)) - \log\log p}{\sqrt{\log\log p}}$$

has a Gaussian normal distribution. In particular, $\omega(\#E(\mathbb{F}_p))$ has normal order $\log \log p$ and standard deviation $\sqrt{\log \log p}$. (These results hold for elliptic curves without CM, if one assumes GRH.)

In light of the Erdős - Kac theorem, one may ask how often $\omega(n)$ takes on extreme values, e.g. values greater than $\gamma \log \log n$, for some fixed $\gamma > 1$. A more precise version of the following result appears in [EN79]; its proof is due to Delange.

Theorem 1.1. Fix $\gamma > 1$. As $x \to \infty$,

$$\#\{n \le x : \omega(n) > \gamma \log \log x\} = \frac{x}{(\log x)^{1+\gamma \log \gamma - \gamma + o(1)}}.$$

Presently, we establish an analogous theorem for the quantity $\omega(\#E(\mathbb{F}_p))$, where E/\mathbb{Q} is an elliptic curve with CM.

Theorem 1.2. Let E/\mathbb{Q} be an elliptic curve with CM. For $\gamma > 1$ fixed,

$$\#\{p \le x : \omega(\#E(\mathbb{F}_p)) > \gamma \log \log x\} = \frac{x}{(\log x)^{2+\gamma \log \gamma - \gamma + o(1)}}.$$

The same statement is true for the quantity $\#\{p \leq x : \omega(\#E(\mathbb{F}_p)) < \gamma \log \log x\}$ when $0 < \gamma < 1$.

The author was partially supported by NSF RTG Grant DMS-1344994.

In what follows, the above theorem will be proved for E/\mathbb{Q} with $E : y^2 = x^3 - x$. Essentially the same method can be used for any elliptic curve with CM; refer to the discussion in §4 of [Polar]. To establish the theorem, we prove corresponding upper and lower bounds in sections §3 and §4, respectively.

Remark. One can ask similar questions about other arithmetic functions applied to $\#E(\mathbb{F}_p)$. For example, Pollack has shown [Polar] that, if *E* has CM, then

$$\sum_{p \le x}' \tau(\#E(\mathbb{F}_p)) \sim c_E \cdot x,$$

where the sum is restricted to primes p of good ordinary reduction for E. Several elements of Pollack's method of proof will appear later in this manuscript.

Notation. K will denote an extension of \mathbb{Q} with ring of integers \mathbb{Z}_K . For each ideal $\mathfrak{a} \subset \mathbb{Z}_K$, we write $\|\mathfrak{a}\|$ for the norm of \mathfrak{a} (that is, $\|\mathfrak{a}\| = \#\mathbb{Z}_K/\mathfrak{a}$) and $\Phi(\mathfrak{a}) = \#(\mathbb{Z}_K/\mathfrak{a})^{\times}$. The function ω applied to an ideal $\mathfrak{a} \subset \mathbb{Z}_K$ will denote the number of distinct prime ideals appearing in the factorization of \mathfrak{a} into a product of prime ideals. For $\alpha \in \mathbb{Z}_K$, $\|\alpha\|$ and $\Phi(\alpha)$ denote those functions evaluated at the ideal (α). If α is invertible modulo an ideal $\mathfrak{u} \subset \mathbb{Z}_K$, we write $gcd(\alpha, \mathfrak{u}) = 1$. The notation $\log_k x$ will be used to denote the kth iterate of the natural logarithm; this is not to be confused with the base-k logarithm. The letters p and q will be reserved for rational prime numbers. We make frequent use of the notation \ll, \gg and O-notation, which has its usual meaning. Other notation may be defined as necessary.

Acknowledgements. The author thanks Paul Pollack for a careful reading of this manuscript and many helpful suggestions.

2. Useful propositions

One of our primary tools will be a version of Brun's sieve in number fields. The following theorem can be proved in much the same way that one obtains Brun's pure sieve in the rational integers, cf. [Pol09, §6.4].

Theorem 2.1. Let K be a number field with ring of integers \mathbb{Z}_K . Let \mathcal{A} be a finite sequence of elements of \mathbb{Z}_K , and let \mathcal{P} be a finite set of prime ideals. Define

$$S(\mathcal{A}, \mathcal{P}) := \#\{a \in \mathcal{A} : \gcd(a, \mathfrak{P}) = 1\}, \text{ where } \mathfrak{P} := \prod_{\mathfrak{p} \in \mathcal{P}} \mathfrak{p}.$$

For an ideal $\mathfrak{u} \subset \mathbb{Z}_K$, write $A_{\mathfrak{u}} := \#\{a \in \mathcal{A} : a \equiv 0 \pmod{\mathfrak{u}}\}$. Let X denote an approximation to the size of \mathcal{A} . Suppose δ is a multiplicative function taking values in [0, 1], and define a function $r(\mathfrak{u})$ such that

$$A_{\mathfrak{u}} = X\delta(\mathfrak{u}) + r(\mathfrak{u})$$

for each \mathfrak{u} dividing \mathfrak{P} . Then, for every even $m \in \mathbb{Z}^+$,

$$S(\mathcal{A},\mathcal{P}) = X \prod_{\mathfrak{p}\in\mathcal{P}} (1-\delta(\mathfrak{p})) + O\bigg(\sum_{\mathfrak{u}\mid\mathfrak{P},\,\omega(\mathfrak{u})\leq m} |r(\mathfrak{u})|\bigg) + O\bigg(X \sum_{\mathfrak{u}\mid\mathfrak{P},\,\omega(\mathfrak{u})\geq m} \delta(\mathfrak{u})\bigg).$$

All implied constants are absolute.

In our estimation of *O*-terms arising from the use of Proposition 2.1, we will make frequent use of the following analogue of the Bombieri-Vinogradov theorem, which we state for an arbitrary imaginary quadratic field K/\mathbb{Q} with class number 1. For $\alpha \in \mathbb{Z}_K$ and an ideal $\mathfrak{q} \subset \mathbb{Z}_K$, write

$$\pi(x; \mathfrak{q}, \alpha) = \#\{\mu \in \mathbb{Z}_K : \|\mu\| \le x, \mu \equiv \alpha \pmod{\mathfrak{q}}\}.$$

Proposition 2.2. For every A > 0, there is a B > 0 so that

$$\sum_{\|\mathbf{q}\| \le x^{1/2}(\log x)^{-B}} \max_{\alpha: \gcd(\alpha, \mathfrak{u})=1} \max_{y \le x} |\pi(y; \mathbf{q}, \alpha) - w_K \cdot \frac{\operatorname{Li}(y)}{\Phi(\mathbf{q})}| \ll \frac{x}{(\log x)^A},$$

where the above sum and maximum are taken over $\mathbf{q} \subset \mathbb{Z}_K$ and $\alpha \in \mathbb{Z}_K$. Here w_K denotes the size of the group of units of \mathbb{Z}_K

The above follows from Huxley's analogue of the Bombieri-Vinogradov theorem for number fields [Hux71]; see the discussion in [Polar, Lemma 2.3].

The following proposition is an analogue of Mertens' theorem for imaginary quadratic fields. It follows immediately from Theorem 2 of [Ros99].

Proposition 2.3. Let K/\mathbb{Q} be an imaginary quadratic field and let α_K denote the residue of the associated Dedekind zeta function, $\zeta_K(s)$, at s = 1. Then

$$\prod_{\|\mathfrak{p}\| \le x} \left(1 - \frac{1}{\|\mathfrak{p}\|} \right)^{-1} \sim e^{\gamma} \alpha_K \log x,$$

where the product is over all prime ideals \mathfrak{p} in \mathbb{Z}_K . Here (and only here), γ is the Euler-Mascheroni constant.

Note also that the "additive version" of Mertens' theorem, i.e.,

$$\sum_{\|\mathbf{p}\| \le x} \frac{1}{\|\mathbf{p}\|} = \log_2 x + B_K + O_K \left(\frac{1}{\log x}\right)$$

for some constant B_K , holds in this case as well; it appears as Lemma 2.4 in [Rosen].

Finally, we will make use of the following estimate for elementary symmetric functions [HR83, p. 147, Lemma 13].

Lemma 2.4. Let y_1, y_2, \ldots, y_M be M non-negative real numbers. For each positive integer d not exceeding M, let

$$\sigma_d = \sum_{1 \le k_1 < k_2 < \dots < k_d \le M} y_{k_1} y_{k_2} \cdots y_{k_d},$$

so that σ_d is the dth elementary symmetric function of the y_k 's. Then, for each d, we have

$$\sigma_d \ge \frac{1}{d!} \sigma_1^d \left(1 - \binom{d}{2} \frac{1}{\sigma_1^2} \sum_{k=1}^M y_k^2 \right).$$

3. An upper bound

Theorem 3.1. Let E be the elliptic curve $E: y^2 = x^3 - x$ and fix $\gamma > 1$. Then

$$\#\{p \le x : \omega(\#E(\mathbb{F}_p)) > \gamma \log_2 x\} \ll_{\gamma} \frac{x(\log_2 x)^5}{(\log x)^{2+\gamma \log \gamma - \gamma}}$$

The same statement is true if instead $0 < \gamma < 1$ and the strict inequality is reversed on the left-hand side.

Before proving Theorem 3.1, we refer to [JU08, Table 2] for the following useful fact concerning the numbers $\#E(\mathbb{F}_p)$: For primes $p \leq x$ with $p \equiv 1 \pmod{4}$, we have

(1)
$$\#E(\mathbb{F}_p) = p + 1 - (\pi + \overline{\pi}) = (\pi - 1)\overline{(\pi - 1)}$$

where $\pi \in \mathbb{Z}[i]$ is chosen so that $p = \pi \overline{\pi}$ and $\pi \equiv 1 \pmod{(1+i)^3}$. (Such π are sometimes called *primary*.) This determines π completely up to conjugation.

We begin the proof of Theorem 3.1 with the following lemma, which will allow us to disregard certain problematic primes p.

Lemma 3.2. Let $x \ge 3$ and let P(n) denote the largest prime factor of n. Let \mathcal{X} denote the set of $n \le x$ for which either of the following properties fail:

- (i) $P(n) > x^{1/6 \log_2 x}$
- (ii) $P(n)^2 \nmid n$.

Then, for any A > 0, the size of \mathcal{X} is $O(x/(\log x)^A)$.

The following upper bound estimate of de Bruijn [dB66, Theorem 2] will be useful in proving the above lemma.

Proposition 3.3. Let $x \ge y \ge 2$ satisfy $(\log x)^2 \le y \le x$. Whenever $u := \frac{\log x}{\log y} \to \infty$, we have

$$\Psi(x,y) \le x/u^{u+o(u)}$$

Proof of Lemma 3.2. If $n \in \mathcal{X}$, then either (a) $P(n) \leq x^{1/6 \log_2 x}$ or (b) $P(n) > x^{1/6 \log_2 x}$ and $P(n)^2 \mid n$. By Proposition 3.3, the number of $n \leq x$ for which (a) holds is $O(x/(\log x)^A)$ for any A > 0, noting that $(\log x)^A \ll (\log x)^{\log_3 x} = (\log_2 x)^{\log_2 x}$. The number of $n \leq x$ for which (b) holds is

$$\ll x \sum_{p > x^{1/6 \log_2 x}} p^{-2} \ll x \exp(-\log x/6 \log_2 x),$$

and this is also $O(x/(\log x)^A)$.

We would like to use Lemma 3.2 to say that a negligible amount of the numbers $\#E(\mathbb{F}_p)$, for $p \leq x$, belong to \mathcal{X} . The following lemma allows us to do so.

Lemma 3.4. The number of $p \leq x$ with $\#E(\mathbb{F}_p) \in \mathcal{X}$ is $O(x/(\log x)^B)$, for any B > 0.

Proof. Suppose $\#E(\mathbb{F}_p) = b \in \mathcal{X}$. Then, by (1), $b = ||\pi - 1||$, where $\pi \in \mathbb{Z}[i]$ is a Gaussian prime lying above p. Thus, the number of $p \leq x$ with $\#E(\mathbb{F}_p) = b$ is bounded from above by the number of Gaussian integers with norm b, which, by [HW00, Theorem 278], is $4 \sum_{d|b} \chi(d)$, where χ is the nontrivial character modulo 4. Now, using the Cauchy-Schwarz inequality and Lemma 3.2,

$$4\sum_{b\in\mathcal{X}}\sum_{d|b}\chi(d) \le 4\sum_{b\in\mathcal{X}}\tau(b) \le 4\left(\sum_{b\in\mathcal{X}}1\right)^{1/2}\left(\sum_{b\in\mathcal{X}}\tau(b)^2\right)^{1/2} \\ \ll \left(\frac{x}{(\log x)^A}\right)^{1/2}\left(x\log^3 x\right)^{1/2} = \frac{x}{(\log x)^{A/2-3/2}}.$$

Since A > 0 can be chosen arbitrarily, this completes the proof.

For k a nonnegative integer, define N_k to be the number of primes $p \leq x$ of good ordinary reduction for E such that $\#E(\mathbb{F}_p)$ possesses properties (i) and (ii) from the above lemma and such that $\omega(\#E(\mathbb{F}_p)) = k$. Then, in the case when $\gamma > 1$,

$$\#\{p \le x : \omega(\#E(\mathbb{F}_p)) > \gamma \log \log x\} = \sum_{k > \gamma \log_2 x} N_k + O\left(\frac{x}{(\log x)^A}\right)$$

for any A > 0. Our task is now to bound N_k from above in terms of k. Evaluating the sum on k then produces the desired upper bound.

It is clear that

(2)
$$N_k \leq \sum_{\substack{a \leq x^{1-1/6 \log_2 x} \\ \omega(a) = k-1}} \sum_{\substack{p \leq x \\ p \equiv 1 \pmod{4} \\ a \mid \# E(\mathbb{F}_p) \\ \# E(\mathbb{F}_p)/a \text{ prime}}} 1.$$

To handle the inner sum, we need information on the integer divisors of $\#E(\mathbb{F}_p)$, where $p \leq x$ and $p \equiv 1 \pmod{4}$. We employ the analysis of Pollack in his proof of [Polar, Theorem 1.1], which we restate here for completeness.

By (1), we have $a \mid \#E(\mathbb{F}_p)$ if and only if $a \mid (\pi - 1)\overline{(\pi - 1)} = ||\pi - 1||$. With this in mind, we have

$$\sum_{\substack{a \le x^{1-1/6 \log \log x} \\ \omega(a) = k-1}} \sum_{\substack{p \le x \\ p \equiv 1 \pmod{4} \\ a \mid \# E(\mathbb{F}_p) \\ \# E(\mathbb{F}_p)/a \text{ prime}}} 1 = \frac{1}{2} \sum_{\substack{a \le x^{1-1/6 \log \log x} \\ \omega(a) = k-1}} \sum_{\substack{\pi \equiv 1 \pmod{(1+i)^3} \\ \pi \equiv 1 \pmod{(1+i)^3} \\ \|\pi - 1\|} \\ \|\pi - 1\|/a \text{ prime}}} 1,$$

where the ' on the sum indicates a restriction to primes π lying over rational primes $p \equiv 1 \pmod{4}$.

3.1. Divisors of shifted Gaussian primes. The conditions on the primed sum above can be reformulated purely in terms of Gaussian integers.

Definition 3.5. For a given integer $a \in \mathbb{N}$, write $a = \prod_q q^{v_q}$, with each q prime. For each $q \mid a$ with $q \equiv 1 \pmod{4}$, write $q = \pi_q \overline{\pi}_q$. Define a set S_a which consists of all products α of the form

$$\alpha = (1+i)^{v_2} \prod_{\substack{q \mid a \\ q \equiv 3 \pmod{4}}} q^{\lceil v_q/2 \rceil} \prod_{\substack{q \mid a \\ q \equiv 1 \pmod{4}}} \alpha_q,$$

where $\alpha_q \in \{\pi_q^i \overline{\pi}_q^{v_q-i} : i = 0, 1, \dots, v_q\}.$

Notice that the condition $a \mid ||\pi - 1||$ is equivalent to $\pi - 1$ being divisible by some element of the set S_a . We can therefore write

(3)
$$\sum_{\substack{a \le x^{1-1/6 \log \log x \\ \omega(a)=k-1 \\ w = 1 \pmod{4} \\ x \neq E(\mathbb{F}_p) \\ \# E(\mathbb{F}_p)/a \text{ prime}}} \sum_{\substack{a \le x^{1-1/6 \log \log x \\ \omega(a)=k-1 \\ \omega(a)=k-1 \\ w = 1 \pmod{2} \\ x \in S_a}} \sum_{\substack{\pi : \|\pi\| \le x \\ \pi \equiv 1 \pmod{(1+i)^3} \\ \alpha \mid \pi - 1 \\ \|\pi - 1\|/a \text{ prime}}} 1$$

Now, for any $\alpha \in S_a$, we have

$$\alpha \overline{\alpha} = a \prod_{q \equiv 3 \pmod{4}} q^{2\lceil v_q/2 \rceil - v_q}.$$

Observe that

$$\frac{\|\pi-1\|}{a} = \frac{(\pi-1)(\overline{\pi-1})}{\alpha\overline{\alpha}} \prod_{q \equiv 3 \pmod{4}} q^{2\lceil v_q/2\rceil - v_q}.$$

Therefore, if $\frac{\|\pi-1\|}{a}$ is to be prime, the number *a* must satisfy exactly one of the following properties:

- 1. The number a is divisible by exactly one prime $q \equiv 3 \pmod{4}$ with v_q an odd number, and $\alpha = u(\pi 1)$ where $u \in \mathbb{Z}[i]$ is a unit; or
- 2. All primes $q \equiv 3 \pmod{4}$ which divide a have v_q even, and $(\pi 1)/\alpha$ is a prime in $\mathbb{Z}[i]$.

This splits the outer sum in (3) into two components.

Lemma 3.6. We have

$$\sum_{\substack{a \le x^{1-1/6 \log \log x} \\ \omega(a) = k-1}}^{b} \sum_{\substack{\alpha \in S_a \\ \pi \equiv 1 \pmod{(1+i)^3} \\ (\pi-1)/\alpha \in U}} \sum_{\substack{x : \|\pi\| \le x \\ \pi \equiv 1 \pmod{(1+i)^3} \\ (\pi-1)/\alpha \in U}} 1 = O\left(\frac{x}{\log^A x}\right),$$

where U is the set of units in $\mathbb{Z}[i]$ and the \flat on the outer sum indicates a restriction to integers a such that there is a unique prime power $q^{v_q} || a$ with $q \equiv 3 \pmod{4}$ and v_q odd.

Proof. If $\alpha = u(\pi - 1)$ for $u \in U$, then there are at most four choices for π , given α . Thus

$$\sum_{\substack{a \le x^{1-1/6 \log \log x} \\ \omega(a) = k-1}}^{b} \sum_{\substack{\alpha \in S_a \\ \pi \equiv 1 \pmod{(1+i)^3}}} \sum_{\substack{\pi : \|\pi\| \le x \\ \alpha \equiv u(\pi-1)}}^{\prime} 1 \le 4 \sum_{\substack{a \le x^{1-1/6 \log \log x} \\ \omega(a) = k-1}}^{b} |S_a|.$$

We have $|S_a| = \prod_{q \equiv 1 \pmod{4}} (v_q + 1)$; this is bounded from above by the divisor function on a, which we denote $\tau(a)$. Therefore, the above is

$$\ll \sum_{a \le x^{1-1/6 \log \log x}} \tau(a) \ll x^{1-1/6 \log_2 x} (\log x),$$

which is $O(x/\log^A x)$ for any A > 0.

The second case provides the main contribution to the sum.

Lemma 3.7. Let $a \leq x^{1-1/6 \log \log x}$ with $\omega(a) = k-1$ such that all primes $q \equiv 3 \pmod{4}$ dividing a have v_q even. Let $\alpha \in S_a$. Then

$$\sum_{\substack{\pi : \|\pi\| \le x \\ \pi \equiv 1 \pmod{(1+i)^3} \\ \alpha \mid \pi - 1 \\ (\pi - 1)/\alpha \text{ prime}}}' 1 \ll \frac{x(\log_2 x)^5}{\|\alpha\|(\log x)^2}$$

uniformly over all a as above and $\alpha \in S_a$.

Proof. If $\pi \equiv 1 \pmod{\alpha}$, then $\pi = 1 + \alpha\beta$ for some $\beta \subset \mathbb{Z}[i]$. Thus $\beta = \frac{\pi - 1}{\alpha}$, and so $\|\beta\| \leq \frac{2\pi}{\|\alpha\|}$. Let \mathcal{A} denote the sequence of elements in $\mathbb{Z}[i]$ given by

$$\left\{\beta(1+\alpha\beta): \|\beta\| \le \frac{2x}{\|\alpha\|}\right\}.$$

Define $\mathcal{P} = \{ \mathfrak{p} \subset \mathbb{Z}[i] : ||\mathfrak{p}|| \leq z \}$ where z is a parameter to be chosen later. Then, in the notation of Theorem 2.1,

$$\sum_{\substack{\pi: \|\pi\| \le x \\ \pi \equiv 1 \pmod{(1+i)^3} \\ (\pi-1)/\alpha \text{ prime}}}' 1 \le S(\mathcal{A}, \mathcal{P}) + O(z).$$

Here, the O(z) term comes from those $\pi \in \mathbb{Z}[i]$ such that both π and $(\pi - 1)/\alpha$ are primes of norm less than z.

For $\mathfrak{u} \subset \mathbb{Z}[i]$, write $A_{\mathfrak{u}} = \#\{a \in \mathcal{A} : a \equiv 0 \pmod{\mathfrak{u}}\}$. An element $\mathfrak{a} \in \mathcal{A}$ is counted by $A_{\mathfrak{u}}$ if and only if a generator of \mathfrak{u} divides a. Thus, by familiar estimates on the number of integer lattice points contained in a circle, $A_{\mathfrak{u}}$ satisfies the equation

$$A_{\mathfrak{u}} = \frac{2\pi x}{\|\alpha\|} \frac{\nu(\mathfrak{u})}{\|\mathfrak{u}\|} + O\Big(\nu(\mathfrak{u}) \frac{\sqrt{x}}{(\|\alpha\|\|\mathfrak{u}\|)^{1/2}}\Big),$$

where

$$\nu(\mathfrak{u}) = \#\{\beta \pmod{\mathfrak{u}} : \beta(1+\alpha\beta) \equiv 0 \pmod{\mathfrak{u}}\}.$$

We apply Theorem 2.1 with

$$X = \frac{2\pi x}{\|\alpha\|}$$
 and $\delta(\mathfrak{u}) = \frac{\nu(\mathfrak{u})}{\|\mathfrak{u}\|}.$

With these choices, we have

$$r(\mathfrak{u}) = O\left(\nu(\mathfrak{u})\frac{\sqrt{x}}{(\|\alpha\|\|\mathfrak{u}\|)^{1/2}|}\right)$$

Then, for any even integer $m \ge 0$,

(4)
$$S(\mathcal{A}, \mathcal{P}) = \frac{2\pi x}{\|\alpha\|} \prod_{\|\mathfrak{p}\| \le z} \left(1 - \frac{\nu(\mathfrak{p})}{\|\mathfrak{p}\|} \right) + O\left(\frac{\sqrt{x}}{\|\alpha\|^{1/2}} \sum_{\substack{\mathfrak{u} \mid \mathfrak{p} \\ \omega(\mathfrak{u}) \le m}} \frac{\nu(\mathfrak{u})}{\|\mathfrak{u}\|^{1/2}} \right) + O\left(\frac{x}{\|\alpha\|} \sum_{\substack{\mathfrak{u} \mid \mathfrak{p} \\ \omega(\mathfrak{u}) \ge m}} \delta(\mathfrak{u}) \right),$$

where $\mathfrak{P} = \prod_{\mathfrak{p} \in \mathcal{P}} \mathfrak{p}$.

For a prime \mathfrak{p} , we have $\nu(\mathfrak{p}) = 2$ if $\alpha \not\equiv 0 \pmod{\mathfrak{p}}$ and $\nu(\mathfrak{p}) = 1$ otherwise. Therefore, the product in the first term is

$$\begin{split} \prod_{\substack{\|\mathfrak{p}\| \leq z\\ \mathfrak{p}\nmid (\alpha)}} \left(1 - \frac{2}{\|\mathfrak{p}\|}\right) \prod_{\substack{\|\mathfrak{p}\| \leq z\\ \mathfrak{p}\mid (\alpha)}} \left(1 - \frac{1}{\|\mathfrak{p}\|}\right) \\ &\leq \prod_{\substack{\|\mathfrak{p}\| \leq z}} \left(1 - \frac{1}{\|\mathfrak{p}\|}\right)^2 \prod_{\substack{\|\mathfrak{p}\| \leq z\\ \mathfrak{p}\mid (\alpha)}} \left(1 - \frac{1}{\|\mathfrak{p}\|}\right)^{-1} \ll \frac{1}{(\log z)^2} \frac{\|\alpha\|}{\Phi(\alpha)} \end{split}$$

where in the last step we used Proposition 2.3.

Choose $z = x^{\frac{1}{200(\log_2 x)^2}}$. Then our first term in (4) is

$$\ll \frac{x(\log_2 x)^4}{\Phi(\alpha)(\log x)^2}.$$

Recall that $\|\alpha\| = a$, and $a \leq x^{1-1/6 \log_2 x}$. Since $\Phi(\alpha) \gg \|\alpha\|/\log_2 x$ (analogous to the minimal order for the usual Euler function, c.f. [HW00, Theorem 328]), the above is

$$\ll \frac{x(\log_2 x)^5}{\|\alpha\|(\log x)^2}.$$

We now show that this "main" term dominates the two *O*-terms uniformly for $\alpha \in S_a$ and $a \leq x^{1-1/6 \log_2 x}$. For the first *O*-term, we begin by noting that $\nu(\mathfrak{u})/||\mathfrak{u}||^{1/2} \ll 1$. Then, taking $m = 10 \lfloor \log_2 x \rfloor$, we have

$$\sum_{\substack{\mathfrak{u}|\mathfrak{P}\\ \omega(\mathfrak{u}) \le m}} \frac{\nu(\mathfrak{u})}{\|\mathfrak{u}\|^{1/2}} \ll \sum_{k=0}^m \binom{\pi_K(z)}{k} \le \sum_{k=0}^m \pi_K(z)^k \le 2\pi_K(z)^m \le x^{1/20\log_2 x},$$

where $\pi_K(z)$ denotes the number of prime ideals $\mathfrak{p} \subset \mathbb{Z}[i]$ with norm up to z. Therefore, the inequality

$$\frac{x(\log_2 x)^5}{\|\alpha\|(\log x)^2} \gg \frac{x^{1/2+1/20\log_2 x}}{\|\alpha\|^{1/2}}$$

holds for all α with $\|\alpha\| \leq x^{1-1/6\log_2 x}$, as desired.

Next we handle the second O-term. The sum in this term is

$$\sum_{\substack{\mathfrak{u}\mid\mathfrak{P}\\\omega(\mathfrak{u})\geq m}} \delta(\mathfrak{u}) \leq \sum_{s\geq m} \frac{1}{s!} \Big(\sum_{\|\mathfrak{p}\|\leq z} \frac{\nu(\mathfrak{p})}{\|\mathfrak{p}\|}\Big)^s.$$

Observe that, by Proposition 2.3, we have

$$\sum_{\|\mathbf{p}\| \le z} \frac{\nu(\mathbf{p})}{\|\mathbf{p}\|} \le 2\log_2 x + O(1)$$

Thus, by the ratio test, one sees that the sum on s is

$$\ll \frac{1}{m!} (2\log_2 x + O(1))^m.$$

Using Proposition 2.3 followed by Stirling's formula, we obtain that the above quantity is

$$\begin{aligned} \frac{1}{m!} (2\log_2 x + O(1))^m &\leq \left(\frac{2e\log_2 x + O(1)}{10\lfloor \log_2 x \rfloor}\right)^{10\lfloor \log_2 x \rfloor} \\ &\ll \left(\frac{e}{5}\right)^{9\log_2 x} \leq \frac{1}{(\log x)^5}. \end{aligned}$$

So the second *O*-term is

$$\ll \frac{x}{\|\alpha\|(\log x)^5},$$

and this is certainly dominated by the main term.

From Lemmas 3.6 and 3.7, we see (2) can be rewritten

$$N_k \ll \frac{x(\log_2 x)^5}{(\log x)^2} \sum_{\substack{a \le x^{1-1/6 \log_2 x} \\ \omega(a) = k-1}} \frac{|S_a|}{a} + O\left(\frac{x}{\log^A x}\right),$$

noting that $\|\alpha\| = a$ for all a under consideration and all $\alpha \in S_a$. We are now in a position to bound N_k from above in terms of k.

Lemma 3.8. We have

$$\sum_{\substack{a \le x^{1-1/6 \log_2 x} \\ \omega(a) = k-1}} \frac{|S_a|}{a} \le \frac{(\log_2 x + O(1))^{k-1}}{(k-1)!}.$$

Proof. We have already seen that the size of S_a is $\prod_{p|a:p\equiv 1 \pmod{4}} (v_p + 1)$, where v_p is defined by $p^{v_p} \parallel a$. Recall that in the current case, each prime $p \equiv 3 \pmod{4}$ dividing a appears to an even power. Therefore, we have

(5)
$$\sum_{\substack{a \le x \\ \omega(a)=k-1}} \frac{|S_a|}{a} \le \frac{1}{(k-1)!} \left(\sum_{\substack{p^\ell \le x \\ p \not\equiv 3 \pmod{4}}} \frac{|S_{p^\ell}|}{p^\ell} + \sum_{\substack{p^{2k} \le x \\ p \equiv 3 \pmod{4}}} \frac{|S_{p^{2k}}|}{p^{2k}} + O(1) \right)^{k-1}$$

Note that $|S_{p^{2k}}| = 1$ for each prime $p \equiv 3 \pmod{4}$. Thus we can absorb the sum corresponding to these primes into the O(1) term, giving

(6)
$$\sum_{\substack{a \le x \\ \omega(a) = k-1}} \frac{|S_a|}{a} \ll \frac{1}{(k-1)!} \left(\sum_{\substack{p^\ell \le x \\ p \not\equiv 3 \pmod{4}}} \frac{|S_{p^\ell}|}{p^\ell} + O(1)\right)^{k-1}.$$

Now

$$\sum_{\substack{p^{\ell} \le x \\ p \not\equiv 3 \pmod{4}}} \frac{|S_{p^{\ell}}|}{p^{\ell}} = \sum_{\substack{p^{\ell} \le x \\ p \equiv 1 \pmod{4}}} \frac{\ell + 1}{p^{\ell}} + O(1)$$
$$= \sum_{\substack{p \le x \\ p \equiv 1 \pmod{4}}} \frac{2}{p} + O(1)$$
$$= \log_2 x + O(1).$$

Inserting this expression into (6) proves the lemma.

3.2. Finishing the upper bound. We have shown so far that

$$N_k \ll \frac{x(\log_2 x)^5}{(\log x)^2} \cdot \frac{(\log_2 x + O(1))^{k-1}}{(k-1)!}$$

We now sum on $k > \gamma \log_2 x$ for fixed $\gamma > 1$ to complete the proof of Theorem 3.1. (The statement corresponding to $0 < \gamma < 1$ may be proved in a completely similar way.) Again using the ratio test and Stirling's formula, we have

$$\sum_{k>\gamma \log_2 x} \frac{(\log_2 x + O(1))^{k-1}}{(k-1)!} \ll \left(\frac{e \log_2 x + O(1)}{\lfloor \gamma \log_2 x \rfloor}\right)^{\lfloor \gamma \log_2 x \rfloor}$$
$$\ll \left(\frac{e}{\gamma} \left(1 + O\left(\frac{1}{\log_2 x}\right)\right)\right)^{\lfloor \gamma \log_2 x \rfloor} \ll \left(\frac{e}{\gamma}\right)^{\lfloor \gamma \log_2 x \rfloor} \ll_{\gamma} (\log x)^{\gamma - \gamma \log \gamma}.$$

Thus, we have obtained an upper bound of

$$\ll_{\gamma} \frac{x(\log_2 x)^5}{(\log x)^{2+\gamma\log\gamma-\gamma}},$$

as desired.

4. A LOWER BOUND

Theorem 4.1. Consider $E: y^2 = x^3 - x$ and fix $\gamma > 1$. Then

$$\#\{p \le x : \omega(\#E(\mathbb{F}_p)) > \gamma \log_2 x\} \ge \frac{x}{(\log x)^{2+\gamma \log \gamma - \gamma + o(1)}}$$

The same statement is true if instead $0 < \gamma < 1$ and the strict inequality is reversed on the left-hand side.

Our strategy in the case $\gamma > 1$ is as follows. As before, we write $\#E(\mathbb{F}_p) = ||\pi - 1||$, where $\pi \equiv 1 \pmod{(1+i)^3}$ and $p = \pi \overline{\pi}$. Let k be an integer to be specified later and fix an ideal $\mathfrak{s} \in \mathbb{Z}[i]$ with the following properties:

(A)
$$((1+i)^3) \mid \mathfrak{s}$$

(B)
$$\omega(\mathfrak{s}) = k$$

- (C) $P^+(\|\mathfrak{s}\|) \le x^{1/100\gamma \log_2 x}$
- (D) Each prime ideal $\mathfrak{p} \mid \mathfrak{s}$ (with the exception of (1 + i)) lies above a rational prime $p \equiv 1 \pmod{4}$
- (E) Distinct \mathfrak{p} dividing \mathfrak{s} lie above distinct p
- (F) \mathfrak{s} squarefree

Here $P^+(n)$ denotes the largest prime factor of n. Note that we have $\omega(\mathfrak{s}) = \omega(||\mathfrak{s}||)$. First, we will estimate from below the size of the set $\mathcal{M}_{\mathfrak{s}}$, defined to be the set of those $\pi \in \mathbb{Z}[i]$ with $||\pi|| \leq x$ satisfying the following properties:

(1) π prime (in $\mathbb{Z}[i]$) (2) $\|\pi\|$ prime (in \mathbb{Z}) (3) $\pi \equiv 1 \pmod{\mathfrak{s}}$ (4) $P^{-}\left(\frac{\|\pi-1\|}{\|\mathfrak{s}\|}\right) > x^{1/100\gamma \log_2 x}$.

Here $P^{-}(n)$ denotes the smallest prime factor of n. The conditions on the size of the prime factors of $\|\mathfrak{s}\|$ and $\|\pi - 1\|/\|\mathfrak{s}\|$ imply that each π with $\|\pi\| \leq x$ belongs to at most one of the sets $\mathcal{M}_{\mathfrak{s}}$. If k is chosen to be greater than $\gamma \log_2 x$, then carefully summing over \mathfrak{s} satisfying the conditions above yields a lower bound on the count of distinct π corresponding to p with the property that $\omega(\#E(\mathbb{F}_p)) \geq k > \gamma \log_2 x$. The problem of counting elements π and $\overline{\pi}$ with $p = \pi\overline{\pi}$ is remedied by inserting a factor of $\frac{1}{2}$, which is of no concern for us.

More care is required in the case $0 < \gamma < 1$, which is handled in Section 4.3.

4.1. Preparing for the proof of Theorem 4.1. Suppose the fixed ideal \mathfrak{s} is generated by $\sigma \in \mathbb{Z}[i]$. We will estimate from below the size of $\mathcal{M}_{\mathfrak{s}}$ using Theorem 2.1. Define \mathcal{A} to be the sequence of elements of $\mathbb{Z}[i]$ of the form

$$\Big\{\frac{\pi-1}{\sigma}: \|\pi\| \le x, \pi \text{ prime, and } \pi \equiv 1 \pmod{\sigma} \Big\}.$$

Let \mathcal{P} denote the set of prime ideals $\{\mathfrak{p} : \|\mathfrak{p}\| \leq z\}$, where $z := x^{1/50\gamma \log_2 x}$. Let $\mathfrak{P} := \prod_{\mathfrak{p} \in \mathcal{P}} \mathfrak{p}$. If $\frac{\pi - 1}{\sigma} \equiv 0 \pmod{\mathfrak{p}}$ implies $\|\mathfrak{p}\| \geq z$, then all primes $p \mid \|\frac{\pi - 1}{\sigma}\|$ have $p > x^{1/100\gamma \log_2 x}$. Note also that if a prime $\pi \in \mathbb{Z}[i], \|\pi\| \leq x$ is such that $\|\pi\|$ is not prime, then $\|\pi\| = p^2$ for some rational prime p, and so the count of such π is clearly $O(\sqrt{x})$. Therefore, we have

$$#\mathcal{M}_{\mathfrak{s}} \ge S(\mathcal{A}, \mathcal{P}) + O(\sqrt{x}).$$

Lemma 4.2. With $\mathcal{M}_{\mathfrak{s}}$ defined as above, we have

$$\#\mathcal{M}_{\mathfrak{s}} \ge c \cdot \frac{\operatorname{Li}(x) \log_2 x}{\Phi(\mathfrak{s}) \log x} + O\left(\sum_{\substack{\mathfrak{u} \mid \mathfrak{P} \\ \omega(\mathfrak{u}) \le m}} |r(\mathfrak{us})|\right) + O\left(\frac{1}{\Phi(\mathfrak{s})} \frac{\operatorname{Li}(x)}{(\log x)^{22}}\right) + O(\sqrt{x}),$$

where $r(\mathbf{v}) = \left|\frac{\operatorname{Li}(x)}{\Phi(\mathbf{v})} - \pi(x;\mathbf{v},1)\right|$ and c > 0 is a constant.

Proof. First, note that we expect the size of \mathcal{A} to be approximately $X := 4 \frac{\operatorname{Li}(x)}{\Phi(\mathfrak{s})}$. Write $A_{\mathfrak{u}} = \#\{a \in \mathcal{A} : \mathfrak{u} \mid a\}$. Then

$$A_{\mathfrak{u}} = X\delta(\mathfrak{u}) + r(\mathfrak{us}),$$

where $\delta(\mathfrak{u}) = \frac{\Phi(\mathfrak{s})}{\Phi(\mathfrak{u}\mathfrak{s})}$ and $r(\mathfrak{u}\mathfrak{s}) = |4\frac{\operatorname{Li}(x)}{\Phi(\mathfrak{u}\mathfrak{s})} - \pi(x;\mathfrak{u}\mathfrak{s},1)|$. By Theorem 2.1, for any even integer $m \ge 0$ we have

$$\begin{split} S(\mathcal{A}, \mathcal{P}) &= 4 \frac{\operatorname{Li}(x)}{\Phi(\mathfrak{s})} \prod_{\|\mathfrak{p}\| \leq z} \left(1 - \frac{\Phi(\mathfrak{s})}{\Phi(\mathfrak{p}\mathfrak{s})} \right) + O\left(\sum_{\substack{\mathfrak{u} \mid \mathfrak{P} \\ \omega(\mathfrak{u}) \leq m}} |r(\mathfrak{u}\mathfrak{s})| \right) \\ &+ O\left(\frac{\operatorname{Li}(x)}{\Phi(\mathfrak{s})} \sum_{\substack{\mathfrak{u} \mid \mathfrak{P} \\ \omega(\mathfrak{u}) \geq m}} \delta(\mathfrak{u}) \right). \end{split}$$

Using Proposition 2.3, we have

$$\begin{split} \prod_{\|\mathfrak{p}\| \leq z} \left(1 - \frac{\Phi(\mathfrak{s})}{\Phi(\mathfrak{p}\mathfrak{s})} \right) &= \prod_{\|\mathfrak{p}\| \leq z \atop \mathfrak{p} \nmid \mathfrak{s}} \left(1 - \frac{1}{\Phi(\mathfrak{p})} \right) \prod_{\|\mathfrak{p}\| \leq z \atop \mathfrak{p} \nmid \mathfrak{s}} \left(1 - \frac{1}{\|\mathfrak{p}\|} \right) \\ &= \prod_{\|\mathfrak{p}\| \leq z} \left(1 - \frac{1}{\|\mathfrak{p}\|} \right) \prod_{\substack{\|\mathfrak{p}\| \leq z \\ \mathfrak{p} \nmid \mathfrak{s}}} \left(1 - \frac{1}{(\|\mathfrak{p}\| - 1)^2} \right) \\ &\gg \frac{1}{\log z} = \frac{\log_2 x}{\log x}. \end{split}$$

Take $m = 14\lfloor \log_2 x \rfloor$. We leave aside the first *O*-term and concentrate for now on the second. This term is handled in essentially the same way as in the proof of the upper bound: The sum in the this term is bounded from above by

$$\sum_{s \ge m} \frac{1}{s!} \Big(\sum_{\|\mathfrak{p}\| \le z} \delta(\mathfrak{p}) \Big)^s$$

By Proposition 2.3, we have

$$\sum_{\|\mathbf{p}\| \le z} \delta(\mathbf{p}) \le \log_2 x + O(1).$$

Now, one sees once again by the ratio test that the sum on s is

$$\ll \frac{1}{m!} \Big(\sum_{\|\mathbf{p}\| \le z} \delta(\mathbf{p}) \Big)^m \le \frac{1}{m!} (\log_2 x + O(1))^m.$$

Thus, by the same calculations as in the proof of Theorem 3.1, the second O-term is

$$\ll \frac{\operatorname{Li}(x)}{\Phi(\mathfrak{s})(\log x)^{22}},$$

completing the proof of the lemma.

We now sum this estimate over σ in an appropriate range to deal with the *O*-terms and establish a lower bound. Here, the cases $\gamma > 1$ and $0 < \gamma < 1$ diverge.

4.2. The case $\gamma > 1$. The argument in this case is somewhat simpler. Recall that \mathfrak{s} is chosen to satisfy properties A through F listed below Theorem 4.1; in particular, $\omega(\mathfrak{s}) = k$ for some integer k and $P^+(||\mathfrak{s}||) \leq x^{1/100\gamma \log_2 x}$. Choose $k := \lfloor \gamma \log_2 x \rfloor + 2$. Since $\omega(||\mathfrak{s}||) = \omega(\mathfrak{s})$, we have that $||\mathfrak{s}|| \leq x^{k/100\gamma \log_2 x} \leq x^{1/10}$. A lower bound follows by estimating the quantity

$$\mathcal{M}=\sum_{\mathfrak{s}}'\#\mathcal{M}_{\mathfrak{s}},$$

where the prime indicates a restriction to those ideals $\mathfrak{s} \subset \mathbb{Z}[i]$ satisfying properties A through F mentioned above.

Lemma 4.3. We have

$$\mathcal{M} \gg \frac{x \log_2 x (\log_2 x + O(\log_3 x))^k}{k! (\log x)^2}.$$

Proof. Since $\sum_{\|\mathfrak{s}\| \leq x} 1/\Phi(\mathfrak{s}) \ll \log x$, the second *O*-term in Lemma 4.2 is, upon summing on \mathfrak{s} , bounded by a constant times $\operatorname{Li}(x)/(\log x)^{21}$. The third error term, $O(\sqrt{x})$, is therefore safely absorbed by this term.

We now handle the sum over \mathfrak{s} of the first *O*-term. We have $|r(\mathfrak{us})| = |\pi(x;\mathfrak{us},1) - 4\frac{\operatorname{Li}(x)}{\Phi(\mathfrak{us})}|$. We can think of the double sum (over \mathfrak{s} and \mathfrak{u}) as a single sum over a modulus \mathfrak{q} , inserting a factor of $\tau(\mathfrak{q})$ to account for the number of ways of writing \mathfrak{q} as a product of two ideals in $\mathbb{Z}[i]$. (Here, $\tau(\mathfrak{q})$ is the number of ideals in $\mathbb{Z}[i]$ which divide \mathfrak{q} .) Recalling our choice of $m = 14\lfloor \log_2 x \rfloor$, we have

$$\sum_{\|\mathfrak{s}\| \le x^{1/10}} \sum_{\substack{\mathfrak{u} \mid \mathfrak{P} \\ \omega(\mathfrak{u}) \le m}} |r(\mathfrak{u}\mathfrak{s})| \ll \sum_{\|\mathfrak{q}\| < x^{2/5}} \left| \pi(x; \mathfrak{q}, 1) - \frac{\operatorname{Li}(x)}{\Phi(\mathfrak{q})} \right| \cdot \tau(\mathfrak{q}).$$

The restriction $\|\mathbf{q}\| \leq x^{2/5}$ comes from $\|\mathbf{s}\| \leq x^{1/10}$ and $\|\mathbf{u}\| \leq x^{m/50\gamma \log_2 x} \leq x^{\cdot 28}$, recalling $m = 14\lfloor \log_2 x \rfloor$ and $\gamma > 1$. Now, for all y > 0 and nonzero $\mathbf{i} \subset \mathbb{Z}[i]$ we have $\pi(y; \mathbf{i}, 1) \ll y/\|\mathbf{i}\|$; indeed, the same inequality is true with $\pi(y; \mathbf{i}, 1)$ replaced by the count of all proper ideals $\equiv 1 \pmod{\mathbf{i}}$. Thus

$$\left|\pi(x; \mathbf{q}, 1) - 4 \frac{\operatorname{Li}(x)}{\Phi(\mathbf{q})}\right| \ll \frac{x}{\Phi(\mathbf{q})}$$

Using this together with the Cauchy-Schwarz inequality and Proposition 2.2, we see that, for any A > 0,

$$\sum_{\|\mathbf{q}\| < x^{2/5}} |\pi(x; \mathbf{q}, 1) - 4 \frac{\operatorname{Li}(x)}{\Phi(\mathbf{q})} | \tau(\mathbf{q}) \ll \sum_{\|\mathbf{q}\| < x^{2/5}} |\pi(x; \mathbf{q}, 1) - 4 \frac{\operatorname{Li}(x)}{\Phi(\mathbf{q})} |^{1/2} \left(\frac{x}{\Phi(\mathbf{q})}\right)^{1/2} \tau(\mathbf{q})$$
$$\ll \left(x \sum_{\|\mathbf{q}\| < x^{2/5}} \frac{\tau(\mathbf{q})^2}{\Phi(\mathbf{q})} \right)^{1/2} \left(\frac{x}{(\log x)^A}\right)^{1/2}.$$

We can estimate this sum using an Euler product:

$$\sum_{\|\mathbf{q}\| < x^{2/5}} \frac{\tau(\mathbf{q})^2}{\Phi(\mathbf{q})} \ll \prod_{\|\mathbf{p}\| \le x^{2/5}} \left(1 + \frac{4}{\|\mathbf{p}\|}\right)$$
$$\leq \exp\left\{\sum_{\|\mathbf{p}\| \le x^{2/5}} \frac{4}{\|\mathbf{p}\|}\right\} \ll (\log x)^4.$$

Collecting our estimates, we see that the total error is at most $x/(\log x)^{A/2-2}$, which is acceptable if A is chosen large enough.

For the main term, we need a lower bound for the sum

(7)
$$\mathcal{M} = \sum_{\mathfrak{s}}' \frac{1}{\Phi(\mathfrak{s})}$$

Let $I = (e^{(\log_2 x)^2/k}, x^{1/10k})$. Define a collection of prime ideals \mathcal{P} such that each $\mathfrak{p} \in \mathcal{P}$ lies above a prime $p \equiv 1 \pmod{4}$, each prime $p \equiv 1 \pmod{4}$ has exactly one prime ideal lying above it in \mathcal{P} , and $\|\mathfrak{p}\| \in I$. We apply Lemma 2.4, with the y_i chosen to be of the form $1/\Phi(\mathfrak{p})$ with $\mathfrak{p} \in \mathcal{P}$, obtaining

(8)
$$\frac{1}{\Phi((1+i)^3)} \sum_{\mathfrak{s}:\mathfrak{p}\mid(\mathfrak{s}/(1+i)^3) \Longrightarrow \mathfrak{p}\in\mathcal{P}} \frac{1}{\Phi(\mathfrak{s}/(1+i)^3)} \\ \gg \frac{1}{(k-1)!} \left(\sum_{\mathfrak{p}\in\mathcal{P}} \frac{1}{\Phi(\mathfrak{p})}\right)^{k-1} \left(1 - \binom{k-1}{2} \left(\frac{1}{S_1^2}\right) \sum_{\mathfrak{p}\in\mathcal{P}} \frac{1}{\Phi(\mathfrak{p})^2}\right),$$

where

$$S_1 = \sum_{\mathfrak{p} \in \mathcal{P}} \frac{1}{\Phi(\mathfrak{p})}.$$

By Theorem 2.3, $S_1 = \frac{1}{2} \log_2 x - 2 \log_3 x + O(1)$. This introduces a factor of $\frac{1}{2^{k-1}}$ to the right-hand side of (8), but this is of no concern: If each of the k prime factors of \mathfrak{s} , excluding (1 + i), lies above a distinct prime $p \equiv 1 \pmod{4}$, then there are 2^{k-1} such ideals \mathfrak{s} of a given norm. Thus, if we extend the sum on the left-hand side of (8) to range over all \mathfrak{s} counted in primed sums (cf. the discussion above Lemma 4.3), we obtain

$$\sum_{\mathfrak{s}}' \frac{1}{\Phi(\mathfrak{s})} \ge \frac{2^{k-1}}{(k-1)!} \left(\frac{1}{2} \log_2 x - 2 \log_3 x + O(1) \right)^{k-1} \times \left(1 - \binom{k-1}{2} \left(\frac{1}{S_1^2} \right) \sum_{\mathfrak{p} \in \mathcal{P}} \frac{1}{\Phi(\mathfrak{p})^2} \right)$$

The quantity $\binom{k-1}{2}$ is bounded from above by $\lceil \gamma \log_2 x \rceil^2$, and the sum on $1/\Phi(\mathfrak{p})^2$ tends to 0 as $x \to \infty$. Therefore,

$$1 - \binom{k-1}{2} \left(\frac{1}{S_1^2}\right) \sum_{\mathfrak{p} \in \mathcal{P}} \frac{1}{\Phi(\mathfrak{p})^2} \ge 1 - 4\gamma^2 \sum_{\mathfrak{p} \in \mathcal{P}} \frac{1}{\Phi(\mathfrak{p})^2} \ge \frac{1}{2}$$

for large enough x, and so

$$\frac{x \log_2 x}{(\log x)^2} \sum_{\mathfrak{s}}' \frac{1}{\Phi(\mathfrak{s})} \gg \frac{x \log_2 x (\log_2 x + O(\log_3 x))^{k-1}}{(k-1)! (\log x)^2},$$

as desired.

With $k = \lfloor \gamma \log_2 x \rfloor + 2$ and by the more precise version of Stirling's formula $n! \sim \sqrt{2\pi n} (n/e)^n$, we have

$$\frac{(\log_2 x + O(\log_3 x))^{k-1}}{(k-1)!} \gg \frac{1}{\sqrt{\log_2 x}} \left(\frac{e \log_2 x + O(\log_3 x)}{\lfloor \gamma \log_2 x \rfloor}\right)^{\lceil \gamma \log_2 x \rceil}$$
$$= \frac{1}{\sqrt{\log_2 x}} \left(\frac{e}{\gamma} \left(1 + O\left(\frac{\log_3 x}{\log_2 x}\right)\right)\right)^{\lceil \gamma \log_2 x \rceil}$$
$$= (\log x)^{\gamma - \gamma \log \gamma + o(1)}.$$

This yields a main term of the shape

$$\frac{x}{(\log x)^{2+\gamma\log\gamma-\gamma+o(1)}},$$

which completes the proof of Theorem 4.1 in the case $\gamma > 1$.

4.3. The case $0 < \gamma < 1$. Above, we used the fact that if $\pi - 1$ is divisible by certain $\mathfrak{s} \subset \mathbb{Z}[i]$ with $\omega(\|\mathfrak{s}\|) = k$, then $\|\pi - 1\|$ will have at least $k > \gamma \log_2 x$ prime factors. The case $0 < \gamma < 1$ is requires more care: We need to ensure that the quantity $\|\pi - 1\|/\|\mathfrak{s}\|$ does not have too many prime factors.

Lemma 4.4. For any $\mathfrak{s} \subset \mathbb{Z}[i]$ satisfying properties A through F listed below Theorem 4.1, we have

$$#\{\pi \in \mathcal{M}_{\mathfrak{s}} : \omega\left(\frac{\|\pi - 1\|}{\|\mathfrak{s}\|}\right) > \frac{\log_2 x}{\log_4 x}\} \ll \frac{x}{\|\mathfrak{s}\|(\log x)^A}.$$

Upon discarding those π counted by the above lemma, the remaining π will have the property that $\omega(\|\pi - 1\|) \in [k, k + \log_2 x / \log_4 x]$. Choosing k to be the greatest integer strictly less than $\gamma \log_2 x - \log_2 x / \log_4 x$ ensures that $\|\pi - 1\| < \gamma \log_2 x$.

Proof of Lemma 4.4. We begin with the observation that, for any $\mathfrak{s} \subset \mathbb{Z}[i]$ under consideration and $\pi \in \mathcal{M}_{\mathfrak{s}}$, we have $\|\pi - 1\|/\|\mathfrak{s}\| \leq 2x/\|\mathfrak{s}\|$. Therefore, we estimate

Noting that $\omega(||\mathfrak{a}||) \leq \omega(\mathfrak{a})$ for any $\mathfrak{a} \subset \mathbb{Z}[i]$, by Theorem 2.3 and Stirling's formula, we have

$$\begin{split} \sum_{\substack{\|\mathfrak{a}\| \leq \frac{2x}{\|\mathfrak{s}\|} \\ \omega(\|\mathfrak{a}\|) > \log_2 x / \log_4 x \\ P^-(\|\mathfrak{a}\|) > x^{1/100 \log_2 x}}} \frac{1}{\|\mathfrak{a}\|} &\leq \sum_{\substack{\|\mathfrak{a}\| \leq \frac{2x}{\|\mathfrak{s}\|} \\ \omega(\mathfrak{a}) > \log_2 x / \log_4 x \\ P^-(\|\mathfrak{a}\|) > x^{1/100 \log_2 x}}} \frac{1}{\|\mathfrak{a}\|} \\ &\leq \sum_{\ell > \log_2 x / \log_4 x} \frac{1}{\ell!} \Big(\sum_{x^{1/100 \log_2 x} \leq \|\mathfrak{p}\| \leq \frac{2x}{\|\mathfrak{s}\|}} \sum_{m=1}^{\infty} \frac{1}{\|\mathfrak{p}\|^m} \Big)^{\ell} \\ &\ll \sum_{\ell > \log_2 x / \log_4 x} \Big(\frac{e \log_3 x + O(1)}{\ell} \Big)^{\ell}. \end{split}$$

For each $\ell > \log_2 x / \log_4 x$, we have $(e \log_3 x + O(1))/\ell < 1/2$. Thus

$$\sum_{\ell > \log_2 x/\log_4 x} \left(\frac{e \log_3 x + O(1)}{\ell}\right)^{\ell} \ll \left(\frac{e \log_3 x + O(1)}{\lfloor \log_2 x/\log_4 x \rfloor + 1}\right)^{\lfloor \log_2 x/\log_4 x \rfloor + 1} \\ \ll \left(\frac{1}{(\log_2 x)^{1+o(1)}}\right)^{\log_2 x/\log_4 x} \ll e^{-2\log_2 x \log_3 x/\log_4 x}$$

This last expression is smaller than $(\log x)^{-A}$, for any A > 0. Therefore, for any fixed A > 0,

$$\#\{\pi \in \mathcal{M}_{\mathfrak{s}} : \omega\left(\frac{\|\pi - 1\|}{\|\mathfrak{s}\|}\right) > \frac{\log_2 x}{\log_4 x}\} \ll \frac{x}{\|\mathfrak{s}\|(\log x)^A}.$$

Write

$$\mathcal{M}'_{\mathfrak{s}} = \{ \pi \in \mathcal{M}_{\mathfrak{s}} : \omega \left(\frac{\|\pi - 1\|}{\|\mathfrak{s}\|} \right) \le \frac{\log_2 x}{\log_4 x} \}$$

Lemmas 4.2 and 4.4 show that $\#\mathcal{M}'_{\mathfrak{s}}$ satisfies

$$\begin{split} \#\mathcal{M}'_{\mathfrak{s}} &\geq c \cdot \frac{x \log_2 x}{\Phi(\mathfrak{s})(\log x)^2} + O\bigg(\sum_{\substack{\mathfrak{u} \mid \mathfrak{P} \\ \omega(\mathfrak{u}) \leq m}} |r(\mathfrak{us})|\bigg) \\ &+ O\bigg(\frac{1}{\Phi(\mathfrak{s})} \frac{\operatorname{Li}(x)}{(\log x)^{22}}\bigg) + O\bigg(\frac{x}{\|\mathfrak{s}\|(\log x)^A}\bigg) + O(\sqrt{x}), \end{split}$$

for any A > 0. Here, all quantities are defined as in the previous section. Just as before, we sum this quantity over $\mathfrak{s} \subset \mathbb{Z}[i]$ satisfying conditions A through F listed below Theorem 4.1. Letting ' on a sum indicate a restriction to such \mathfrak{s} , we have, by the same calculations as before,

$$\mathcal{M}' \gg \frac{x \log_2 x (\log_2 x + O(\log_3 x))^{k-1}}{(k-1)! (\log x)^2},$$

where

$$\mathcal{M}' = \sum_{\mathfrak{s}}' \# \mathcal{M}'_{\mathfrak{s}}.$$

Recall that k is chosen to be the largest integer strictly less than $\gamma \log_2 x - \log_2 x / \log_4 x$; then by Stirling's formula,

$$\frac{(\log_2 x + O(\log_3 x))^{k-1}}{(k-1)!} \gg \frac{1}{\sqrt{\log_2 x}} \Big(\frac{e \log_2 x + O(\log_3 x)}{k-1}\Big)^{k-1}$$
$$\gg \frac{1}{\sqrt{\log_2 x}} \Big(\frac{e}{\gamma} \Big(1 + O\Big(\frac{1}{\log_4 x}\Big)\Big)^{\gamma \log_2 x - \log_2 x/\log_4 x - 1}$$
$$\gg (\log x)^{\gamma \log \gamma - \gamma + o(1)}.$$

A final assembly of estimates yields Theorem 4.1 in the case $0 < \gamma < 1$.

References

- [Coj05] A. C. Cojocaru, Reductions of an elliptic curve with almost prime orders, Acta Arith. 119 (2005), no. 3, 265–289.
- [dB66] N. G. de Bruijn, On the number of positive integers $\leq x$ and free of prime factors > y. II, Indag. Math. **28** (1966), 239 247.
- [EN79] P. Erdős and J-L. Nicolas, Sur la fonction nombre de facteurs premiers de n, Séminaire Delange-Pisot-Poitou. Théorie des nombres 20 (1978-1979), no. 2, 1–19.
- [HR83] H. Halberstam and K. F. Roth, Sequences, second ed., Springer-Verlag, New York-Berlin, 1983.
- [Hux71] M. N. Huxley, The large sieve inequality for algebraic number fields. III. Zero-density results, J. London Math. Soc. (2) 3 (1971), 233–240.
- [HW00] G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, fifth ed., Oxford University Press, Oxford, 2000.
- [JU08] J. Jiménez Urroz, Almost prime orders of CM elliptic curves modulo p, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 5011, Springer, Berlin, 2008, pp. 74–87.
- [Liu06] Y-R. Liu, Prime analogues of the Erdős-Kac theorem for elliptic curves, J. Number Theory 119 (2006), no. 2, 155–170.
- [Pol09] P. Pollack, Not always buried deep, American Mathematical Society, Providence, RI, 2009.
- [Polar] _____, A Titchmarsh divisor problem for elliptic curves, Math. Proc. Cambridge Philos. Soc. (to appear).
- [Ros99] M. Rosen, A generalization of Mertens' theorem, J. Ramanujan Math. Soc. 14 (1999), no. 1, 1–19.

DEPARTMENT OF MATHEMATICS, BOYD GRADUATE STUDIES RESEARCH CENTER, UNIVERSITY OF GEORGIA, ATHENS, GA 30602, USA

 $E\text{-}mail\ address: \texttt{ltroupe@math.uga.edu}$