ORDERS OF REDUCTIONS OF ELLIPTIC CURVES WITH MANY AND FEW PRIME FACTORS

LEE TROUPE

Abstract

In this paper, we investigate extreme values of $\omega\left(\# E\left(\mathbb{F}_{p}\right)\right)$, where E / \mathbb{Q} is an elliptic curve with complex multiplication and ω is the number-of-distinct-prime-divisors function. For fixed $\gamma>1$, we prove that $$
\#\left\{p \leq x: \omega\left(\# E\left(\mathbb{F}_{p}\right)\right)>\gamma \log \log x\right\}=\frac{x}{(\log x)^{2+\gamma \log \gamma-\gamma+o(1)}}
$$

The same result holds for the quantity $\#\left\{p \leq x: \omega\left(\# E\left(\mathbb{F}_{p}\right)\right)<\gamma \log \log x\right\}$ when $0<\gamma<1$. The argument is worked out in detail for the curve $E: y^{2}=x^{3}-x$, and we discuss how the method can be adapted for other CM elliptic curves.

1. Introduction

Let E / \mathbb{Q} be an elliptic curve. For primes p of good reduction, one has

$$
E\left(\mathbb{F}_{p}\right) \simeq \mathbb{Z} / d_{p} \mathbb{Z} \oplus \mathbb{Z} / e_{p} \mathbb{Z}
$$

where d_{p} and e_{p} are uniquely determined natural numbers such that d_{p} divides e_{p}. Thus, $\# E\left(\mathbb{F}_{p}\right)=d_{p} e_{p}$. We concern ourselves with the behavior $\omega\left(\# E\left(\mathbb{F}_{p}\right)\right)$, where $\omega(n)$ denotes the number of distinct prime factors of the number n, as p varies over primes of good reduction. Work has been done already in this arena: If the curve E has CM, Cojocaru [Coj05, Corollary 6] showed that the normal order of $\omega\left(\# E\left(\mathbb{F}_{p}\right)\right)$ is $\log \log p$, and a year later, Liu [Liu06] established an elliptic curve analogue of the celebrated Erdős - Kac theorem: For any elliptic curve E / \mathbb{Q} with CM , the quantity

$$
\frac{\omega\left(\# E\left(\mathbb{F}_{p}\right)\right)-\log \log p}{\sqrt{\log \log p}}
$$

has a Gaussian normal distribution. In particular, $\omega\left(\# E\left(\mathbb{F}_{p}\right)\right)$ has normal order $\log \log p$ and standard deviation $\sqrt{\log \log p}$. (These results hold for elliptic curves without CM, if one assumes GRH.)

In light of the Erdős - Kac theorem, one may ask how often $\omega(n)$ takes on extreme values, e.g. values greater than $\gamma \log \log n$, for some fixed $\gamma>1$. A more precise version of the following result appears in [EN79]; its proof is due to Delange.
Theorem 1.1. Fix $\gamma>1$. As $x \rightarrow \infty$,

$$
\#\{n \leq x: \omega(n)>\gamma \log \log x\}=\frac{x}{(\log x)^{1+\gamma \log \gamma-\gamma+o(1)}}
$$

Presently, we establish an analogous theorem for the quantity $\omega\left(\# E\left(\mathbb{F}_{p}\right)\right)$, where E / \mathbb{Q} is an elliptic curve with CM.
Theorem 1.2. Let E / \mathbb{Q} be an elliptic curve with $C M$. For $\gamma>1$ fixed,

$$
\#\left\{p \leq x: \omega\left(\# E\left(\mathbb{F}_{p}\right)\right)>\gamma \log \log x\right\}=\frac{x}{(\log x)^{2+\gamma \log \gamma-\gamma+o(1)}}
$$

The same statement is true for the quantity $\#\left\{p \leq x: \omega\left(\# E\left(\mathbb{F}_{p}\right)\right)<\gamma \log \log x\right\}$ when $0<\gamma<1$.

[^0]In what follows, the above theorem will be proved for E / \mathbb{Q} with $E: y^{2}=x^{3}-x$. Essentially the same method can be used for any elliptic curve with CM; refer to the discussion in $\S 4$ of [Polar]. To establish the theorem, we prove corresponding upper and lower bounds in sections $\S 3$ and $\S 4$, respectively.

Remark. One can ask similar questions about other arithmetic functions applied to $\# E\left(\mathbb{F}_{p}\right)$. For example, Pollack has shown [Polar] that, if E has CM, then

$$
\sum_{p \leq x}^{\prime} \tau\left(\# E\left(\mathbb{F}_{p}\right)\right) \sim c_{E} \cdot x
$$

where the sum is restricted to primes p of good ordinary reduction for E. Several elements of Pollack's method of proof will appear later in this manuscript.

Notation. K will denote an extension of \mathbb{Q} with ring of integers \mathbb{Z}_{K}. For each ideal $\mathfrak{a} \subset \mathbb{Z}_{K}$, we write $\|\mathfrak{a}\|$ for the norm of \mathfrak{a} (that is, $\left.\|\mathfrak{a}\|=\# \mathbb{Z}_{K} / \mathfrak{a}\right)$ and $\Phi(\mathfrak{a})=\#\left(\mathbb{Z}_{K} / \mathfrak{a}\right)^{\times}$. The function ω applied to an ideal $\mathfrak{a} \subset \mathbb{Z}_{K}$ will denote the number of distinct prime ideals appearing in the factorization of \mathfrak{a} into a product of prime ideals. For $\alpha \in \mathbb{Z}_{K},\|\alpha\|$ and $\Phi(\alpha)$ denote those functions evaluated at the ideal (α). If α is invertible modulo an ideal $\mathfrak{u} \subset \mathbb{Z}_{K}$, we write $\operatorname{gcd}(\alpha, \mathfrak{u})=1$. The notation $\log _{k} x$ will be used to denote the k th iterate of the natural logarithm; this is not to be confused with the base- k logarithm. The letters p and q will be reserved for rational prime numbers. We make frequent use of the notation \ll, \gg and O-notation, which has its usual meaning. Other notation may be defined as necessary.
Acknowledgements. The author thanks Paul Pollack for a careful reading of this manuscript and many helpful suggestions.

2. Useful propositions

One of our primary tools will be a version of Brun's sieve in number fields. The following theorem can be proved in much the same way that one obtains Brun's pure sieve in the rational integers, cf. [Pol09, §6.4].
Theorem 2.1. Let K be a number field with ring of integers \mathbb{Z}_{K}. Let \mathcal{A} be a finite sequence of elements of \mathbb{Z}_{K}, and let \mathcal{P} be a finite set of prime ideals. Define

$$
S(\mathcal{A}, \mathcal{P}):=\#\{a \in \mathcal{A}: \operatorname{gcd}(a, \mathfrak{P})=1\}, \text { where } \mathfrak{P}:=\prod_{\mathfrak{p} \in \mathcal{P}} \mathfrak{p}
$$

For an ideal $\mathfrak{u} \subset \mathbb{Z}_{K}$, write $A_{\mathfrak{u}}:=\#\{a \in \mathcal{A}: a \equiv 0(\bmod \mathfrak{u})\}$. Let X denote an approximation to the size of \mathcal{A}. Suppose δ is a multiplicative function taking values in $[0,1]$, and define a function $r(\mathfrak{u})$ such that

$$
A_{\mathfrak{u}}=X \delta(\mathfrak{u})+r(\mathfrak{u})
$$

for each \mathfrak{u} dividing \mathfrak{P}. Then, for every even $m \in \mathbb{Z}^{+}$,

$$
S(\mathcal{A}, \mathcal{P})=X \prod_{\mathfrak{p} \in \mathcal{P}}(1-\delta(\mathfrak{p}))+O\left(\sum_{\mathfrak{u} \mid \mathfrak{F}, \omega(\mathfrak{u}) \leq m}|r(\mathfrak{u})|\right)+O\left(X \sum_{\mathfrak{u | P}, \omega(\mathfrak{u}) \geq m} \delta(\mathfrak{u})\right) .
$$

All implied constants are absolute.
In our estimation of O-terms arising from the use of Proposition 2.1, we will make frequent use of the following analogue of the Bombieri-Vinogradov theorem, which we state for an arbitrary imaginary quadratic field K / \mathbb{Q} with class number 1 . For $\alpha \in \mathbb{Z}_{K}$ and an ideal $\mathfrak{q} \subset \mathbb{Z}_{K}$, write

$$
\pi(x ; \mathfrak{q}, \alpha)=\#\left\{\mu \in \mathbb{Z}_{K}:\|\mu\| \leq x, \mu \equiv \alpha \quad(\bmod \mathfrak{q})\right\}
$$

Proposition 2.2. For every $A>0$, there is a $B>0$ so that

$$
\sum_{\|\mathfrak{q}\| \leq x^{1 / 2}(\log x)^{-B}} \max _{\max ^{\operatorname{gcd}(\alpha, \mathfrak{u})=1}} \max _{y \leq x}\left|\pi(y ; \mathfrak{q}, \alpha)-w_{K} \cdot \frac{\operatorname{Li}(y)}{\Phi(\mathfrak{q})}\right| \ll \frac{x}{(\log x)^{A}}
$$

where the above sum and maximum are taken over $\mathfrak{q} \subset \mathbb{Z}_{K}$ and $\alpha \in \mathbb{Z}_{K}$. Here w_{K} denotes the size of the group of units of \mathbb{Z}_{K}

The above follows from Huxley's analogue of the Bombieri-Vinogradov theorem for number fields [Hux71]; see the discussion in [Polar, Lemma 2.3].

The following proposition is an analogue of Mertens' theorem for imaginary quadratic fields. It follows immediately from Theorem 2 of [Ros99].
Proposition 2.3. Let K / \mathbb{Q} be an imaginary quadratic field and let α_{K} denote the residue of the associated Dedekind zeta function, $\zeta_{K}(s)$, at $s=1$. Then

$$
\prod_{\|\mathfrak{p}\| \leq x}\left(1-\frac{1}{\|\mathfrak{p}\|}\right)^{-1} \sim e^{\gamma} \alpha_{K} \log x
$$

where the product is over all prime ideals \mathfrak{p} in \mathbb{Z}_{K}. Here (and only here), γ is the Euler-Mascheroni constant.

Note also that the "additive version" of Mertens' theorem, i.e.,

$$
\sum_{\|\mathfrak{p}\| \leq x} \frac{1}{\|\mathfrak{p}\|}=\log _{2} x+B_{K}+O_{K}\left(\frac{1}{\log x}\right)
$$

for some constant B_{K}, holds in this case as well; it appears as Lemma 2.4 in [Rosen].
Finally, we will make use of the following estimate for elementary symmetric functions [HR83, p. 147, Lemma 13].
Lemma 2.4. Let $y_{1}, y_{2}, \ldots, y_{M}$ be M non-negative real numbers. For each positive integer d not exceeding M, let

$$
\sigma_{d}=\sum_{1 \leq k_{1}<k_{2}<\cdots<k_{d} \leq M} y_{k_{1}} y_{k_{2}} \cdots y_{k_{d}},
$$

so that σ_{d} is the dth elementary symmetric function of the y_{k} 's. Then, for each d, we have

$$
\sigma_{d} \geq \frac{1}{d!} \sigma_{1}^{d}\left(1-\binom{d}{2} \frac{1}{\sigma_{1}^{2}} \sum_{k=1}^{M} y_{k}^{2}\right) .
$$

3. An upper bound

Theorem 3.1. Let E be the elliptic curve $E: y^{2}=x^{3}-x$ and fix $\gamma>1$. Then

$$
\#\left\{p \leq x: \omega\left(\# E\left(\mathbb{F}_{p}\right)\right)>\gamma \log _{2} x\right\} \ll_{\gamma} \frac{x\left(\log _{2} x\right)^{5}}{(\log x)^{2+\gamma} \log \gamma-\gamma}
$$

The same statement is true if instead $0<\gamma<1$ and the strict inequality is reversed on the left-hand side.

Before proving Theorem 3.1, we refer to [JU08, Table 2] for the following useful fact concerning the numbers $\# E\left(\mathbb{F}_{p}\right)$: For primes $p \leq x$ with $p \equiv 1(\bmod 4)$, we have

$$
\begin{equation*}
\# E\left(\mathbb{F}_{p}\right)=p+1-(\pi+\bar{\pi})=(\pi-1) \overline{(\pi-1)}, \tag{1}
\end{equation*}
$$

where $\pi \in \mathbb{Z}[i]$ is chosen so that $p=\pi \bar{\pi}$ and $\pi \equiv 1\left(\bmod (1+i)^{3}\right)$. (Such π are sometimes called primary.) This determines π completely up to conjugation.

We begin the proof of Theorem 3.1 with the following lemma, which will allow us to disregard certain problematic primes p.

Lemma 3.2. Let $x \geq 3$ and let $P(n)$ denote the largest prime factor of n. Let \mathcal{X} denote the set of $n \leq x$ for which either of the following properties fail:
(i) $P(n)>x^{1 / 6 \log _{2} x}$
(ii) $P(n)^{2} \nmid n$.

Then, for any $A>0$, the size of \mathcal{X} is $O\left(x /(\log x)^{A}\right)$.
The following upper bound estimate of de Bruijn [dB66, Theorem 2] will be useful in proving the above lemma.
Proposition 3.3. Let $x \geq y \geq 2$ satisfy $(\log x)^{2} \leq y \leq x$. Whenever $u:=\frac{\log x}{\log y} \rightarrow \infty$, we have

$$
\Psi(x, y) \leq x / u^{u+o(u)}
$$

Proof of Lemma 3.2. If $n \in \mathcal{X}$, then either (a) $P(n) \leq x^{1 / 6 \log _{2} x}$ or (b) $P(n)>x^{1 / 6 \log _{2} x}$ and $P(n)^{2} \mid n$. By Proposition 3.3, the number of $n \leq x$ for which (a) holds is $O\left(x /(\log x)^{A}\right)$ for any $A>0$, noting that $(\log x)^{A} \ll(\log x)^{\log _{3} x}=\left(\log _{2} x\right)^{\log _{2} x}$. The number of $n \leq x$ for which (b) holds is

$$
\ll x \sum_{p>x^{1 / 6} \log _{2} x} p^{-2} \ll x \exp \left(-\log x / 6 \log _{2} x\right),
$$

and this is also $O\left(x /(\log x)^{A}\right)$.
We would like to use Lemma 3.2 to say that a negligible amount of the numbers $\# E\left(\mathbb{F}_{p}\right)$, for $p \leq x$, belong to \mathcal{X}. The following lemma allows us to do so.
Lemma 3.4. The number of $p \leq x$ with $\# E\left(\mathbb{F}_{p}\right) \in \mathcal{X}$ is $O\left(x /(\log x)^{B}\right)$, for any $B>0$.
Proof. Suppose $\# E\left(\mathbb{F}_{p}\right)=b \in \mathcal{X}$. Then, by (1), $b=\|\pi-1\|$, where $\pi \in \mathbb{Z}[i]$ is a Gaussian prime lying above p. Thus, the number of $p \leq x$ with $\# E\left(\mathbb{F}_{p}\right)=b$ is bounded from above by the number of Gaussian integers with norm b, which, by [HW00, Theorem 278], is $4 \sum_{d \mid b} \chi(d)$, where χ is the nontrivial character modulo 4 . Now, using the Cauchy-Schwarz inequality and Lemma 3.2,

$$
\begin{aligned}
4 \sum_{b \in \mathcal{X}} \sum_{d \mid b} \chi(d) \leq 4 \sum_{b \in \mathcal{X}} \tau(b) & \leq 4\left(\sum_{b \in \mathcal{X}} 1\right)^{1 / 2}\left(\sum_{b \in \mathcal{X}} \tau(b)^{2}\right)^{1 / 2} \\
& \ll\left(\frac{x}{(\log x)^{A}}\right)^{1 / 2}\left(x \log ^{3} x\right)^{1 / 2}=\frac{x}{(\log x)^{A / 2-3 / 2}}
\end{aligned}
$$

Since $A>0$ can be chosen arbitrarily, this completes the proof.
For k a nonnegative integer, define N_{k} to be the number of primes $p \leq x$ of good ordinary reduction for E such that $\# E\left(\mathbb{F}_{p}\right)$ possesses properties (i) and (ii) from the above lemma and such that $\omega\left(\# E\left(\mathbb{F}_{p}\right)\right)=k$. Then, in the case when $\gamma>1$,

$$
\#\left\{p \leq x: \omega\left(\# E\left(\mathbb{F}_{p}\right)\right)>\gamma \log \log x\right\}=\sum_{k>\gamma \log _{2} x} N_{k}+O\left(\frac{x}{(\log x)^{A}}\right)
$$

for any $A>0$. Our task is now to bound N_{k} from above in terms of k. Evaluating the sum on k then produces the desired upper bound.

It is clear that

$$
\begin{equation*}
N_{k} \leq \sum_{\substack{a \leq x^{1-1 / 6 \log _{2} x} \\ \omega(a)=k-1}} \sum_{\substack{p \leq x \\ p \equiv 1(\bmod 4) \\ a \mid \# E\left(\mathbb{F}_{P}\right) \\ \# E\left(\mathbb{F}_{p}\right) / a \text { prime }}} 1 . \tag{2}
\end{equation*}
$$

To handle the inner sum, we need information on the integer divisors of $\# E\left(\mathbb{F}_{p}\right)$, where $p \leq x$ and $p \equiv 1(\bmod 4)$. We employ the analysis of Pollack in his proof of [Polar, Theorem 1.1], which we restate here for completeness.

By (1), we have $a \mid \# E\left(\mathbb{F}_{p}\right)$ if and only if $a \mid(\pi-1) \overline{(\pi-1)}=\|\pi-1\|$. With this in mind, we have

$$
\sum_{\substack{a \leq x^{1-1 / 6 \log \log x} \\ \omega(a)=k-1}} \sum_{\substack{p \leq x \\ p \equiv 1(\bmod 4) \\ a \mid \# E\left(\mathbb{F}_{p}\right) \\ \# E\left(\mathbb{F}_{p}\right) / a \text { prime }}} 1=\frac{1}{2} \sum_{\substack{a \leq x^{1-1 / 6 \log \log x} \\ \omega(a)=k-1}} \sum_{\substack{\pi:\|\pi\| \leq x \\ \pi \equiv 1\left(\bmod (1+i)^{3}\right) \\ a \mid\|\pi-1\| \\ \\\|\pi-1\| / a \text { prime }}}^{\prime} 1,
$$

where the' on the sum indicates a restriction to primes π lying over rational primes $p \equiv 1$ $(\bmod 4)$.
3.1. Divisors of shifted Gaussian primes. The conditions on the primed sum above can be reformulated purely in terms of Gaussian integers.
Definition 3.5. For a given integer $a \in \mathbb{N}$, write $a=\prod_{q} q^{v_{q}}$, with each q prime. For each $q \mid a$ with $q \equiv 1(\bmod 4)$, write $q=\pi_{q} \bar{\pi}_{q}$. Define a set S_{a} which consists of all products α of the form

$$
\alpha=(1+i)^{v_{2}} \prod_{\substack{q \mid a \\ q \equiv 3(\bmod 4)}} q^{\left\lceil v_{q} / 2\right\rceil} \prod_{\substack{q \mid a \\ q \equiv 1(\bmod 4)}} \alpha_{q}
$$

where $\alpha_{q} \in\left\{\pi_{q}^{i} \bar{\pi}_{q}^{v_{q}-i}: i=0,1, \ldots, v_{q}\right\}$.
Notice that the condition $a \mid\|\pi-1\|$ is equivalent to $\pi-1$ being divisible by some element of the set S_{a}. We can therefore write

$$
\begin{equation*}
\sum_{\substack{a \leq x^{1-1 / 6 \log \log x}}} \sum_{\substack{p \leq x \\ p \equiv 1(\bmod 4) \\ a \mid \# E\left(\mathbb{F}_{p}\right) \\ \omega(a)=k-1}} 1 \leq \frac{1}{2} \sum_{\substack{a \leq x^{1-1 / 6 \log \log x}}} \sum_{\omega \in S_{a}} \sum_{\substack{\pi:\|\pi\| \leq x \\ \omega(a)=k-1}} 1 \tag{3}
\end{equation*}
$$

Now, for any $\alpha \in S_{a}$, we have

$$
\alpha \bar{\alpha}=a \prod_{q \equiv 3(\bmod 4)} q^{2\left\lceil v_{q} / 2\right\rceil-v_{q}}
$$

Observe that

$$
\frac{\|\pi-1\|}{a}=\frac{(\pi-1)(\overline{\pi-1})}{\alpha \bar{\alpha}} \prod_{q \equiv 3(\bmod 4)} q^{2\left\lceil v_{q} / 2\right\rceil-v_{q}} .
$$

Therefore, if $\frac{\|\pi-1\|}{a}$ is to be prime, the number a must satisfy exactly one of the following properties:

1. The number a is divisible by exactly one prime $q \equiv 3(\bmod 4)$ with v_{q} an odd number, and $\alpha=u(\pi-1)$ where $u \in \mathbb{Z}[i]$ is a unit; or
2. All primes $q \equiv 3(\bmod 4)$ which divide a have v_{q} even, and $(\pi-1) / \alpha$ is a prime in $\mathbb{Z}[i]$.
This splits the outer sum in (3) into two components.
Lemma 3.6. We have

$$
\sum_{\substack{a \leq x^{1-1 / 6 \log \log x} \\ \omega(a)=k-1}} \sum_{\substack{\alpha \in S_{a}}}^{\substack{\pi:\|\pi\| \leq x \\ \pi \equiv 1\left(\bmod (1+i)^{3}\right) \\(\pi-1) / \alpha \in U}} \mid
$$

where U is the set of units in $\mathbb{Z}[i]$ and the b on the outer sum indicates a restriction to integers a such that there is a unique prime power $q^{v_{q}} \| a$ with $q \equiv 3(\bmod 4)$ and v_{q} odd.
Proof. If $\alpha=u(\pi-1)$ for $u \in U$, then there are at most four choices for π, given α. Thus

$$
\sum_{\substack{a \leq x^{1-1 / 6 \log \log x} \\ \omega(a)=k-1}}^{b} \sum_{\substack{\alpha \in S_{a}}} \sum_{\substack{\pi \equiv 1:\|\pi\| \leq x \\ \pi=1\left(\bmod (1+i)^{3}\right) \\ \alpha=u(\pi-1)}}^{\prime} 1 \leq 4 \sum_{\substack{a \leq x^{1-1 / 6 \log \log x} \\ \omega(a)=k-1}}^{b}\left|S_{a}\right| .
$$

We have $\left|S_{a}\right|=\prod_{q \equiv 1(\bmod 4)}\left(v_{q}+1\right)$; this is bounded from above by the divisor function on a, which we denote $\tau(a)$. Therefore, the above is

$$
\ll \sum_{a \leq x^{1-1 / 6 \log \log x}} \tau(a) \ll x^{1-1 / 6 \log _{2} x}(\log x),
$$

which is $O\left(x / \log ^{A} x\right)$ for any $A>0$.
The second case provides the main contribution to the sum.
Lemma 3.7. Let $a \leq x^{1-1 / 6 \log \log x}$ with $\omega(a)=k-1$ such that all primes $q \equiv 3(\bmod 4)$ dividing a have v_{q} even. Let $\alpha \in S_{a}$. Then

$$
\sum_{\substack{\pi:\|\pi\| \leq x \\ \pi \equiv 1\left(\bmod (1+i)^{3}\right) \\ \alpha \mid \pi-1 \\(\pi-1) / \alpha \text { prime }}}^{\prime} 1 \ll \frac{x\left(\log _{2} x\right)^{5}}{\|\alpha\|(\log x)^{2}}
$$

uniformly over all a as above and $\alpha \in S_{a}$.
Proof. If $\pi \equiv 1(\bmod \alpha)$, then $\pi=1+\alpha \beta$ for some $\beta \subset \mathbb{Z}[i]$. Thus $\beta=\frac{\pi-1}{\alpha}$, and so $\|\beta\| \leq \frac{2 x}{\|\alpha\|}$. Let \mathcal{A} denote the sequence of elements in $\mathbb{Z}[i]$ given by

$$
\left\{\beta(1+\alpha \beta):\|\beta\| \leq \frac{2 x}{\|\alpha\|}\right\} .
$$

Define $\mathcal{P}=\{\mathfrak{p} \subset \mathbb{Z}[i]:\|\mathfrak{p}\| \leq z\}$ where z is a parameter to be chosen later. Then, in the notation of Theorem 2.1,

$$
\sum_{\substack{\pi:\|\pi\| \leq x \\ \pi \equiv 1\left(\bmod (1+i)^{3}\right) \\ \alpha \alpha \pi-1 \\(\pi-1) / \alpha \text { prime }}}^{\prime} 1 \leq S(\mathcal{A}, \mathcal{P})+O(z) .
$$

Here, the $O(z)$ term comes from those $\pi \in \mathbb{Z}[i]$ such that both π and $(\pi-1) / \alpha$ are primes of norm less than z.

For $\mathfrak{u} \subset \mathbb{Z}[i]$, write $A_{\mathfrak{u}}=\#\{a \in \mathcal{A}: a \equiv 0(\bmod \mathfrak{u})\}$. An element $\mathfrak{a} \in \mathcal{A}$ is counted by $A_{\mathfrak{u}}$ if and only if a generator of \mathfrak{u} divides a. Thus, by familiar estimates on the number of integer lattice points contained in a circle, $A_{\mathfrak{u}}$ satisfies the equation

$$
A_{\mathfrak{u}}=\frac{2 \pi x}{\|\alpha\|} \frac{\nu(\mathfrak{u})}{\|\mathfrak{u}\|}+O\left(\nu(\mathfrak{u}) \frac{\sqrt{x}}{(\|\alpha\|\|\mathfrak{u}\|)^{1 / 2}}\right)
$$

where

$$
\nu(\mathfrak{u})=\#\{\beta \quad(\bmod \mathfrak{u}): \beta(1+\alpha \beta) \equiv 0 \quad(\bmod \mathfrak{u})\} .
$$

We apply Theorem 2.1 with

$$
X=\frac{2 \pi x}{\|\alpha\|} \quad \text { and } \quad \delta(\mathfrak{u})=\frac{\nu(\mathfrak{u})}{\|\mathfrak{u}\|}
$$

With these choices, we have

$$
r(\mathfrak{u})=O\left(\nu(\mathfrak{u}) \frac{\sqrt{x}}{(\|\alpha\|\|\mathfrak{u}\|)^{1 / 2} \mid}\right) .
$$

Then, for any even integer $m \geq 0$,

$$
\begin{gather*}
S(\mathcal{A}, \mathcal{P})=\frac{2 \pi x}{\|\alpha\|} \prod_{\|\mathfrak{p}\| \leq z}\left(1-\frac{\nu(\mathfrak{p})}{\|\mathfrak{p}\|}\right)+O\left(\frac{\sqrt{x}}{\|\alpha\|^{1 / 2}} \sum_{\substack{u \mathfrak{P} \\
\omega(\mathfrak{u}) \leq m}} \frac{\nu(\mathfrak{u})}{\|\mathfrak{u}\|^{1 / 2}}\right) \tag{4}\\
+O\left(\frac{x}{\|\alpha\|} \sum_{\substack{u \mathfrak{Y} \\
\omega(\mathfrak{l}) \geq m}} \delta(\mathfrak{u})\right)
\end{gather*}
$$

where $\mathfrak{P}=\prod_{\mathfrak{p} \in \mathcal{P}} \mathfrak{p}$.
For a prime \mathfrak{p}, we have $\nu(\mathfrak{p})=2$ if $\alpha \not \equiv 0(\bmod \mathfrak{p})$ and $\nu(\mathfrak{p})=1$ otherwise. Therefore, the product in the first term is

$$
\begin{aligned}
\prod_{\substack{\|\mathfrak{p}\| \leq z \\
\mathfrak{p}\{(\alpha)}}\left(1-\frac{2}{\|\mathfrak{p}\|}\right) & \prod_{\substack{\|\mathfrak{p}\| \leq z \\
\mathfrak{p} \mid(\alpha)}}\left(1-\frac{1}{\|\mathfrak{p}\|}\right) \\
& \leq \prod_{\|\mathfrak{p}\| \leq z}\left(1-\frac{1}{\|\mathfrak{p}\|}\right)^{2} \prod_{\substack{\|\mathfrak{p}\| \leq z \\
\mathfrak{p} \mid(\alpha)}}\left(1-\frac{1}{\|\mathfrak{p}\|}\right)^{-1} \ll \frac{1}{(\log z)^{2}} \frac{\|\alpha\|}{\Phi(\alpha)}
\end{aligned}
$$

where in the last step we used Proposition 2.3.
Choose $z=x^{\frac{1}{200\left(\log _{2} x\right)^{2}}}$. Then our first term in (4) is

$$
\ll \frac{x\left(\log _{2} x\right)^{4}}{\Phi(\alpha)(\log x)^{2}}
$$

Recall that $\|\alpha\|=a$, and $a \leq x^{1-1 / 6 \log _{2} x}$. Since $\Phi(\alpha) \gg\|\alpha\| / \log _{2} x$ (analogous to the minimal order for the usual Euler function, c.f. [HW00, Theorem 328]), the above is

$$
\ll \frac{x\left(\log _{2} x\right)^{5}}{\|\alpha\|(\log x)^{2}}
$$

We now show that this "main" term dominates the two O-terms uniformly for $\alpha \in S_{a}$ and $a \leq x^{1-1 / 6 \log _{2} x}$. For the first O-term, we begin by noting that $\nu(\mathfrak{u}) /\|\mathfrak{u}\|^{1 / 2} \ll 1$. Then, taking $m=10\left\lfloor\log _{2} x\right\rfloor$, we have

$$
\sum_{\substack{u \mid \mathfrak{B} \\ \omega(\mathfrak{u}) \leq m}} \frac{\nu(\mathfrak{u})}{\|\mathfrak{u}\|^{1 / 2}} \ll \sum_{k=0}^{m}\binom{\pi_{K}(z)}{k} \leq \sum_{k=0}^{m} \pi_{K}(z)^{k} \leq 2 \pi_{K}(z)^{m} \leq x^{1 / 20 \log _{2} x}
$$

where $\pi_{K}(z)$ denotes the number of prime ideals $\mathfrak{p} \subset \mathbb{Z}[i]$ with norm up to z. Therefore, the inequality

$$
\frac{x\left(\log _{2} x\right)^{5}}{\|\alpha\|(\log x)^{2}} \gg \frac{x^{1 / 2+1 / 20 \log _{2} x}}{\|\alpha\|^{1 / 2}}
$$

holds for all α with $\|\alpha\| \leq x^{1-1 / 6 \log _{2} x}$, as desired.
Next we handle the second O-term. The sum in this term is

$$
\sum_{\substack{u \mathfrak{P} \\(\mathfrak{M}) \geq m}} \delta(\mathfrak{u}) \leq \sum_{s \geq m} \frac{1}{s!}\left(\sum_{\|\mathfrak{p}\| \leq z} \frac{\nu(\mathfrak{p})}{\|\mathfrak{p}\|}\right)^{s} .
$$

Observe that, by Proposition 2.3, we have

$$
\sum_{\|\mathfrak{p}\| \leq z} \frac{\nu(\mathfrak{p})}{\|\mathfrak{p}\|} \leq 2 \log _{2} x+O(1)
$$

Thus, by the ratio test, one sees that the sum on s is

$$
\ll \frac{1}{m!}\left(2 \log _{2} x+O(1)\right)^{m}
$$

Using Proposition 2.3 followed by Stirling's formula, we obtain that the above quantity is

$$
\begin{aligned}
\frac{1}{m!}\left(2 \log _{2} x+O(1)\right)^{m} & \leq\left(\frac{2 e \log _{2} x+O(1)}{10\left\lfloor\log _{2} x\right\rfloor}\right)^{10\left\lfloor\log _{2} x\right\rfloor} \\
& \ll\left(\frac{e}{5}\right)^{9 \log _{2} x} \leq \frac{1}{(\log x)^{5}}
\end{aligned}
$$

So the second O-term is

$$
\ll \frac{x}{\|\alpha\|(\log x)^{5}},
$$

and this is certainly dominated by the main term.
From Lemmas 3.6 and 3.7, we see (2) can be rewritten

$$
N_{k} \ll \frac{x\left(\log _{2} x\right)^{5}}{(\log x)^{2}} \sum_{\substack{a \leq x^{1-1 / 6 \log _{2} x} \\ \omega(a)=k-1}} \frac{\left|S_{a}\right|}{a}+O\left(\frac{x}{\log ^{A} x}\right)
$$

noting that $\|\alpha\|=a$ for all a under consideration and all $\alpha \in S_{a}$. We are now in a position to bound N_{k} from above in terms of k.

Lemma 3.8. We have

$$
\sum_{\substack{a \leq x^{1-1 / 6} \log _{2} x \\ \omega(a)=k-1}} \frac{\left|S_{a}\right|}{a} \leq \frac{\left(\log _{2} x+O(1)\right)^{k-1}}{(k-1)!}
$$

Proof. We have already seen that the size of S_{a} is $\prod_{p \mid a: p \equiv 1(\bmod 4)}\left(v_{p}+1\right)$, where v_{p} is defined by $p^{v_{p}} \| a$. Recall that in the current case, each prime $p \equiv 3(\bmod 4)$ dividing a appears to an even power. Therefore, we have

$$
\begin{equation*}
\sum_{\substack{a \leq x \\ \omega(a)=k-1}} \frac{\left|S_{a}\right|}{a} \leq \frac{1}{(k-1)!}\left(\sum_{\substack{p^{\ell} \leq x \\ p \neq 3(\bmod 4)}} \frac{\left|S_{p^{\ell}}\right|}{p^{\ell}}+\sum_{\substack{p^{2 k} \leq x \\ p \equiv 3(\bmod 4)}} \frac{\left|S_{p^{2 k}}\right|}{p^{2 k}}+O(1)\right)^{k-1} . \tag{5}
\end{equation*}
$$

Note that $\left|S_{p^{2 k}}\right|=1$ for each prime $p \equiv 3(\bmod 4)$. Thus we can absorb the sum corresponding to these primes into the $O(1)$ term, giving

$$
\begin{equation*}
\sum_{\substack{a \leq x \\ \omega(a)=k-1}} \frac{\left|S_{a}\right|}{a} \ll \frac{1}{(k-1)!}\left(\sum_{\substack{p^{\ell} \leq x \\ p \neq 3(\bmod 4)}} \frac{\left|S_{p^{\ell}}\right|}{p^{\ell}}+O(1)\right)^{k-1} \tag{6}
\end{equation*}
$$

Now

$$
\begin{aligned}
\sum_{\substack{p^{\ell} \leq x \\
p \neq 3(\bmod 4)}} \frac{\left|S_{p^{\ell}}\right|}{p^{\ell}} & =\sum_{\substack{p^{\ell} \leq x \\
p \equiv 1(\bmod 4)}} \frac{\ell+1}{p^{\ell}}+O(1) \\
& =\sum_{\substack{p \leq x \\
p \equiv 1(\bmod 4)}} \frac{2}{p}+O(1) \\
& =\log _{2} x+O(1) .
\end{aligned}
$$

Inserting this expression into (6) proves the lemma.
3.2. Finishing the upper bound. We have shown so far that

$$
N_{k} \ll \frac{x\left(\log _{2} x\right)^{5}}{(\log x)^{2}} \cdot \frac{\left(\log _{2} x+O(1)\right)^{k-1}}{(k-1)!}
$$

We now sum on $k>\gamma \log _{2} x$ for fixed $\gamma>1$ to complete the proof of Theorem 3.1. (The statement corresponding to $0<\gamma<1$ may be proved in a completely similar way.) Again using the ratio test and Stirling's formula, we have

$$
\begin{aligned}
\sum_{k>\gamma \log _{2} x} & \frac{\left(\log _{2} x+O(1)\right)^{k-1}}{(k-1)!} \ll\left(\frac{e \log _{2} x+O(1)}{\left\lfloor\gamma \log _{2} x\right\rfloor}\right)^{\left\lfloor\gamma \log _{2} x\right\rfloor} \\
& \ll\left(\frac{e}{\gamma}\left(1+O\left(\frac{1}{\log _{2} x}\right)\right)\right)^{\left\lfloor\gamma \log _{2} x\right\rfloor} \ll\left(\frac{e}{\gamma}\right)^{\left\lfloor\gamma \log _{2} x\right\rfloor} \lll(\log x)^{\gamma-\gamma \log \gamma} .
\end{aligned}
$$

Thus, we have obtained an upper bound of

$$
<_{\gamma} \frac{x\left(\log _{2} x\right)^{5}}{(\log x)^{2+\gamma} \log \gamma-\gamma},
$$

as desired.

4. A Lower bound

Theorem 4.1. Consider $E: y^{2}=x^{3}-x$ and fix $\gamma>1$. Then

$$
\#\left\{p \leq x: \omega\left(\# E\left(\mathbb{F}_{p}\right)\right)>\gamma \log _{2} x\right\} \geq \frac{x}{(\log x)^{2+\gamma \log \gamma-\gamma+o(1)}}
$$

The same statement is true if instead $0<\gamma<1$ and the strict inequality is reversed on the left-hand side.

Our strategy in the case $\gamma>1$ is as follows. As before, we write $\# E\left(\mathbb{F}_{p}\right)=\|\pi-1\|$, where $\pi \equiv 1\left(\bmod (1+i)^{3}\right)$ and $p=\pi \bar{\pi}$. Let k be an integer to be specified later and fix an ideal $\mathfrak{s} \in \mathbb{Z}[i]$ with the following properties:
(A) $\left((1+i)^{3}\right) \mid \mathfrak{s}$
(B) $\omega(\mathfrak{s})=k$
(C) $P^{+}(\|\mathfrak{s}\|) \leq x^{1 / 100 \gamma \log _{2} x}$
(D) Each prime ideal $\mathfrak{p} \mid \mathfrak{s}$ (with the exception of $(1+i)$) lies above a rational prime $p \equiv 1(\bmod 4)$
(E) Distinct \mathfrak{p} dividing \mathfrak{s} lie above distinct p
(F) \mathfrak{s} squarefree

Here $P^{+}(n)$ denotes the largest prime factor of n. Note that we have $\omega(\mathfrak{s})=\omega(\|\mathfrak{s}\|)$. First, we will estimate from below the size of the set $\mathcal{M}_{\mathfrak{s}}$, defined to be the set of those $\pi \in \mathbb{Z}[i]$ with $\|\pi\| \leq x$ satisfying the following properties:
(1) π prime (in $\mathbb{Z}[i]$)
(2) $\|\pi\|$ prime (in \mathbb{Z})
(3) $\pi \equiv 1(\bmod \mathfrak{s})$
(4) $P^{-}\left(\frac{\|\pi-1\|}{\|\boldsymbol{s}\|}\right)>x^{1 / 100 \gamma \log _{2} x}$.

Here $P^{-}(n)$ denotes the smallest prime factor of n. The conditions on the size of the prime factors of $\|\mathfrak{s}\|$ and $\|\pi-1\| /\|\mathfrak{s}\|$ imply that each π with $\|\pi\| \leq x$ belongs to at most one of the sets $\mathcal{M}_{\mathfrak{s}}$. If k is chosen to be greater than $\gamma \log _{2} x$, then carefully summing over \mathfrak{s} satisfying the conditions above yields a lower bound on the count of distinct π corresponding to p with the property that $\omega\left(\# E\left(\mathbb{F}_{p}\right)\right) \geq k>\gamma \log _{2} x$. The problem of counting elements π and $\bar{\pi}$ with $p=\pi \bar{\pi}$ is remedied by inserting a factor of $\frac{1}{2}$, which is of no concern for us.

More care is required in the case $0<\gamma<1$, which is handled in Section 4.3.
4.1. Preparing for the proof of Theorem 4.1. Suppose the fixed ideal \mathfrak{s} is generated by $\sigma \in \mathbb{Z}[i]$. We will estimate from below the size of $\mathcal{M}_{\mathfrak{s}}$ using Theorem 2.1. Define \mathcal{A} to be the sequence of elements of $\mathbb{Z}[i]$ of the form

$$
\left\{\frac{\pi-1}{\sigma}:\|\pi\| \leq x, \pi \text { prime, and } \pi \equiv 1 \quad(\bmod \sigma)\right\} .
$$

Let \mathcal{P} denote the set of prime ideals $\{\mathfrak{p}:\|\mathfrak{p}\| \leq z\}$, where $z:=x^{1 / 50 \gamma \log _{2} x}$. Let $\mathfrak{P}:=\prod_{\mathfrak{p} \in \mathcal{P}} \mathfrak{p}$. If $\frac{\pi-1}{\sigma} \equiv 0(\bmod \mathfrak{p})$ implies $\|\mathfrak{p}\| \geq z$, then all primes $p \left\lvert\,\left\|\frac{\pi-1}{\sigma}\right\|\right.$ have $p>x^{1 / 100 \gamma \log _{2} x}$. Note also that if a prime $\pi \in \mathbb{Z}[i],\|\pi\| \leq x$ is such that $\|\pi\|$ is not prime, then $\|\pi\|=p^{2}$ for some rational prime p, and so the count of such π is clearly $O(\sqrt{x})$. Therefore, we have

$$
\# \mathcal{M}_{\mathfrak{s}} \geq S(\mathcal{A}, \mathcal{P})+O(\sqrt{x})
$$

Lemma 4.2. With $\mathcal{M}_{\mathfrak{s}}$ defined as above, we have

$$
\# \mathcal{M}_{\mathfrak{s}} \geq c \cdot \frac{\operatorname{Li}(x) \log _{2} x}{\Phi(\mathfrak{s}) \log x}+O\left(\sum_{\substack{\mathfrak{u} \mathfrak{F} \\ \omega(\mathfrak{u}) \leq m}}|r(\mathfrak{u s})|\right)+O\left(\frac{1}{\Phi(\mathfrak{s})} \frac{\operatorname{Li}(x)}{(\log x)^{22}}\right)+O(\sqrt{x}),
$$

where $r(\mathfrak{v})=\left|\frac{\mathrm{Li}(x)}{\Phi(\mathfrak{v})}-\pi(x ; \mathfrak{v}, 1)\right|$ and $c>0$ is a constant.
Proof. First, note that we expect the size of \mathcal{A} to be approximately $X:=4 \frac{\mathrm{Li}(x)}{\Phi(\mathbf{s})}$. Write $A_{\mathfrak{u}}=\#\{a \in \mathcal{A}: \mathfrak{u} \mid a\}$. Then

$$
A_{\mathfrak{u}}=X \delta(\mathfrak{u})+r(\mathfrak{u s}),
$$

where $\delta(\mathfrak{u})=\frac{\Phi(\mathfrak{s})}{\Phi(\mathfrak{u s})}$ and $r(\mathfrak{u s})=\left|4 \frac{\mathrm{Li}(x)}{\Phi(\mathfrak{u s})}-\pi(x ; \mathfrak{u s}, 1)\right|$. By Theorem 2.1, for any even integer $m \geq 0$ we have

$$
\begin{gathered}
S(\mathcal{A}, \mathcal{P})=4 \frac{\operatorname{Li}(x)}{\Phi(\mathfrak{s})} \prod_{\|\mathfrak{p}\| \leq z}\left(1-\frac{\Phi(\mathfrak{s})}{\Phi(\mathfrak{p s})}\right)+O\left(\sum_{\substack{\mathfrak{u} \mathfrak{F} \\
\omega(\mathfrak{l}) \leq m}}|r(\mathfrak{u s})|\right) \\
+O\left(\frac{\operatorname{Li}(x)}{\Phi(\mathfrak{s})} \sum_{\substack{\mathfrak{u} \mid \mathfrak{F} \\
\omega(\mathfrak{u}) \geq m}} \delta(\mathfrak{u})\right) .
\end{gathered}
$$

Using Proposition 2.3, we have

$$
\begin{aligned}
\prod_{\|\mathfrak{p}\| \leq z}\left(1-\frac{\Phi(\mathfrak{s})}{\Phi(\mathfrak{p s})}\right) & =\prod_{\substack{\|\mathfrak{p}\| \leq z \\
\mathfrak{p} \mid \mathfrak{s}}}\left(1-\frac{1}{\Phi(\mathfrak{p})}\right) \prod_{\substack{\|\mathfrak{p}\| \leq z \\
\mathfrak{p} \mid \mathfrak{s}}}\left(1-\frac{1}{\|\mathfrak{p}\|}\right) \\
& =\prod_{\|\mathfrak{p}\| \leq z}\left(1-\frac{1}{\|\mathfrak{p}\|}\right) \prod_{\substack{\|\mathfrak{p}\| \leq z \\
\mathfrak{p} \mid \mathfrak{s}}}\left(1-\frac{1}{(\|\mathfrak{p}\|-1)^{2}}\right) \\
& \gg \frac{1}{\log z}=\frac{\log _{2} x}{\log x} .
\end{aligned}
$$

Take $m=14\left\lfloor\log _{2} x\right\rfloor$. We leave aside the first O-term and concentrate for now on the second. This term is handled in essentially the same way as in the proof of the upper bound: The sum in the this term is bounded from above by

$$
\sum_{s \geq m} \frac{1}{s!}\left(\sum_{\|\mathfrak{p}\| \leq z} \delta(\mathfrak{p})\right)^{s}
$$

By Proposition 2.3, we have

$$
\sum_{\|\mathfrak{p}\| \leq z} \delta(\mathfrak{p}) \leq \log _{2} x+O(1)
$$

Now, one sees once again by the ratio test that the sum on s is

$$
\ll \frac{1}{m!}\left(\sum_{\|\mathfrak{p}\| \leq z} \delta(\mathfrak{p})\right)^{m} \leq \frac{1}{m!}\left(\log _{2} x+O(1)\right)^{m}
$$

Thus, by the same calculations as in the proof of Theorem 3.1, the second O-term is

$$
\ll \frac{\operatorname{Li}(x)}{\Phi(\mathfrak{s})(\log x)^{22}}
$$

completing the proof of the lemma.
We now sum this estimate over σ in an appropriate range to deal with the O-terms and establish a lower bound. Here, the cases $\gamma>1$ and $0<\gamma<1$ diverge.
4.2. The case $\gamma>1$. The argument in this case is somewhat simpler. Recall that \mathfrak{s} is chosen to satisfy properties A through F listed below Theorem 4.1; in particular, $\omega(\mathfrak{s})=k$ for some integer k and $P^{+}(\|\mathfrak{s}\|) \leq x^{1 / 100 \gamma \log _{2} x}$. Choose $k:=\left\lfloor\gamma \log _{2} x\right\rfloor+2$. Since $\omega(\|\mathfrak{s}\|)=\omega(\mathfrak{s})$, we have that $\|\mathfrak{s}\| \leq x^{k / 100 \gamma \log _{2} x} \leq x^{1 / 10}$. A lower bound follows by estimating the quantity

$$
\mathcal{M}=\sum_{\mathfrak{s}}^{\prime} \# \mathcal{M}_{\mathfrak{s}}
$$

where the prime indicates a restriction to those ideals $\mathfrak{s} \subset \mathbb{Z}[i]$ satisfying properties A through F mentioned above.
Lemma 4.3. We have

$$
\mathcal{M} \gg \frac{x \log _{2} x\left(\log _{2} x+O\left(\log _{3} x\right)\right)^{k}}{k!(\log x)^{2}}
$$

Proof. Since $\sum_{\|\mathfrak{s}\| \leq x} 1 / \Phi(\mathfrak{s}) \ll \log x$, the second O-term in Lemma 4.2 is, upon summing on \mathfrak{s}, bounded by a constant times $\operatorname{Li}(x) /(\log x)^{21}$. The third error term, $O(\sqrt{x})$, is therefore safely absorbed by this term.

We now handle the sum over \mathfrak{s} of the first O-term. We have $|r(\mathfrak{u s})|=\left|\pi(x ; \mathfrak{u s}, 1)-4 \frac{\operatorname{Li}(x)}{\Phi(u \mathfrak{s})}\right|$. We can think of the double sum (over \mathfrak{s} and \mathfrak{u}) as a single sum over a modulus \mathfrak{q}, inserting a factor of $\tau(\mathfrak{q})$ to account for the number of ways of writing \mathfrak{q} as a product of two ideals in $\mathbb{Z}[i]$. (Here, $\tau(\mathfrak{q})$ is the number of ideals in $\mathbb{Z}[i]$ which divide \mathfrak{q}.) Recalling our choice of $m=14\left\lfloor\log _{2} x\right\rfloor$, we have

$$
\sum_{\substack{\|\mathfrak{s}\| \leq x^{1 / 10}}} \sum_{\substack{u \mid \mathfrak{F} \\ \omega(\mathfrak{u}) \leq m}} \left\lvert\, r\left(\left.\mathfrak{u s)}\left|\ll \sum_{\|\mathfrak{q}\|<x^{2 / 5}}\right| \pi(x ; \mathfrak{q}, 1)-\frac{\operatorname{Li}(x)}{\Phi(\mathfrak{q})} \right\rvert\, \cdot \tau(\mathfrak{q}) .\right.\right.
$$

The restriction $\|\mathfrak{q}\| \leq x^{2 / 5}$ comes from $\|\mathfrak{s}\| \leq x^{1 / 10}$ and $\|\mathfrak{u}\| \leq x^{m / 50 \gamma \log _{2} x} \leq x^{28}$, recalling $m=14\left\lfloor\log _{2} x\right\rfloor$ and $\gamma>1$. Now, for all $y>0$ and nonzero $\mathfrak{i} \subset \mathbb{Z}[i]$ we have $\pi(y ; \mathfrak{i}, 1) \ll$ $y /\|\mathfrak{i}\|$; indeed, the same inequality is true with $\pi(y ; \mathfrak{i}, 1)$ replaced by the count of all proper ideals $\equiv 1(\bmod \mathfrak{i})$. Thus

$$
\left|\pi(x ; \mathfrak{q}, 1)-4 \frac{\operatorname{Li}(x)}{\Phi(\mathfrak{q})}\right| \ll \frac{x}{\Phi(\mathfrak{q})}
$$

Using this together with the Cauchy-Schwarz inequality and Proposition 2.2, we see that, for any $A>0$,

$$
\begin{aligned}
\sum_{\|\mathfrak{q}\|<x^{2 / 5}}\left|\pi(x ; \mathfrak{q}, 1)-4 \frac{\operatorname{Li}(x)}{\Phi(\mathfrak{q})}\right| \tau(\mathfrak{q}) & \ll \sum_{\|\mathfrak{q}\|<x^{2 / 5}}\left|\pi(x ; \mathfrak{q}, 1)-4 \frac{\operatorname{Li}(x)}{\Phi(\mathfrak{q})}\right|^{1 / 2}\left(\frac{x}{\Phi(\mathfrak{q})}\right)^{1 / 2} \tau(\mathfrak{q}) \\
& \ll\left(x \sum_{\|\mathfrak{q}\|<x^{2 / 5}} \frac{\tau(\mathfrak{q})^{2}}{\Phi(\mathfrak{q})}\right)^{1 / 2}\left(\frac{x}{(\log x)^{A}}\right)^{1 / 2}
\end{aligned}
$$

We can estimate this sum using an Euler product:

$$
\begin{aligned}
\sum_{\|\mathfrak{q}\|<x^{2 / 5}} \frac{\tau(\mathfrak{q})^{2}}{\Phi(\mathfrak{q})} & \ll \prod_{\|\mathfrak{p}\| \leq x^{2 / 5}}\left(1+\frac{4}{\|\mathfrak{p}\|}\right) \\
& \leq \exp \left\{\sum_{\|\mathfrak{p}\| \leq x^{2 / 5}} \frac{4}{\|\mathfrak{p}\|}\right\} \ll(\log x)^{4}
\end{aligned}
$$

Collecting our estimates, we see that the total error is at most $x /(\log x)^{A / 2-2}$, which is acceptable if A is chosen large enough.

For the main term, we need a lower bound for the sum

$$
\begin{equation*}
\mathcal{M}=\sum_{\mathfrak{s}}^{\prime} \frac{1}{\Phi(\mathfrak{s})} \tag{7}
\end{equation*}
$$

Let $I=\left(e^{\left(\log _{2} x\right)^{2} / k}, x^{1 / 10 k}\right)$. Define a collection of prime ideals \mathcal{P} such that each $\mathfrak{p} \in \mathcal{P}$ lies above a prime $p \equiv 1(\bmod 4)$, each prime $p \equiv 1(\bmod 4)$ has exactly one prime ideal lying above it in \mathcal{P}, and $\|\mathfrak{p}\| \in I$. We apply Lemma 2.4 , with the y_{i} chosen to be of the form $1 / \Phi(\mathfrak{p})$ with $\mathfrak{p} \in \mathcal{P}$, obtaining

$$
\begin{align*}
& \frac{1}{\Phi\left((1+i)^{3}\right)} \sum_{\mathfrak{s}: \mathfrak{p} \mid\left(\mathfrak{s} /(1+i)^{3}\right)}^{\prime} \frac{1}{\Longrightarrow \mathfrak{p} \in \mathcal{P}} \overline{\Phi\left(\mathfrak{s} /(1+i)^{3}\right)} \tag{8}\\
& \gg \frac{1}{(k-1)!}\left(\sum_{\mathfrak{p} \in \mathcal{P}} \frac{1}{\Phi(\mathfrak{p})}\right)^{k-1}\left(1-\binom{k-1}{2}\left(\frac{1}{S_{1}^{2}}\right) \sum_{\mathfrak{p} \in \mathcal{P}} \frac{1}{\Phi(\mathfrak{p})^{2}}\right)
\end{align*}
$$

where

$$
S_{1}=\sum_{\mathfrak{p} \in \mathcal{P}} \frac{1}{\Phi(\mathfrak{p})}
$$

By Theorem 2.3, $S_{1}=\frac{1}{2} \log _{2} x-2 \log _{3} x+O(1)$. This introduces a factor of $\frac{1}{2^{k-1}}$ to the right-hand side of (8), but this is of no concern: If each of the k prime factors of \mathfrak{s}, excluding $(1+i)$, lies above a distinct prime $p \equiv 1(\bmod 4)$, then there are 2^{k-1} such ideals \mathfrak{s} of a given norm. Thus, if we extend the sum on the left-hand side of (8) to range over all \mathfrak{s} counted in primed sums (cf. the discussion above Lemma 4.3), we obtain

$$
\begin{aligned}
\sum_{\mathfrak{s}}^{\prime} \frac{1}{\Phi(\mathfrak{s})} \geq \frac{2^{k-1}}{(k-1)!}\left(\frac{1}{2} \log _{2} x\right. & \left.-2 \log _{3} x+O(1)\right)^{k-1} \\
& \times\left(1-\binom{k-1}{2}\left(\frac{1}{S_{1}^{2}}\right) \sum_{\mathfrak{p} \in \mathcal{P}} \frac{1}{\Phi(\mathfrak{p})^{2}}\right)
\end{aligned}
$$

The quantity $\binom{k-1}{2}$ is bounded from above by $\left\lceil\gamma \log _{2} x\right\rceil^{2}$, and the sum on $1 / \Phi(\mathfrak{p})^{2}$ tends to 0 as $x \rightarrow \infty$. Therefore,

$$
1-\binom{k-1}{2}\left(\frac{1}{S_{1}^{2}}\right) \sum_{\mathfrak{p} \in \mathcal{P}} \frac{1}{\Phi(\mathfrak{p})^{2}} \geq 1-4 \gamma^{2} \sum_{\mathfrak{p} \in \mathcal{P}} \frac{1}{\Phi(\mathfrak{p})^{2}} \geq \frac{1}{2}
$$

for large enough x, and so

$$
\frac{x \log _{2} x}{(\log x)^{2}} \sum_{\mathfrak{s}}^{\prime} \frac{1}{\Phi(\mathfrak{s})} \gg \frac{x \log _{2} x\left(\log _{2} x+O\left(\log _{3} x\right)\right)^{k-1}}{(k-1)!(\log x)^{2}}
$$

as desired.
With $k=\left\lfloor\gamma \log _{2} x\right\rfloor+2$ and by the more precise version of Stirling's formula $n!\sim$ $\sqrt{2 \pi n}(n / e)^{n}$, we have

$$
\begin{aligned}
\frac{\left(\log _{2} x+O\left(\log _{3} x\right)\right)^{k-1}}{(k-1)!} & \gg \frac{1}{\sqrt{\log _{2} x}}\left(\frac{e \log _{2} x+O\left(\log _{3} x\right)}{\left\lfloor\gamma \log _{2} x\right\rfloor}\right)^{\left\lceil\gamma \log _{2} x\right\rceil} \\
& =\frac{1}{\sqrt{\log _{2} x}}\left(\frac{e}{\gamma}\left(1+O\left(\frac{\log _{3} x}{\log _{2} x}\right)\right)\right)^{\left\lceil\gamma \log _{2} x\right\rceil} \\
& =(\log x)^{\gamma-\gamma \log \gamma+o(1)} .
\end{aligned}
$$

This yields a main term of the shape

$$
\frac{x}{(\log x)^{2+\gamma \log \gamma-\gamma+o(1)}},
$$

which completes the proof of Theorem 4.1 in the case $\gamma>1$.
4.3. The case $\mathbf{0}<\gamma<\mathbf{1}$. Above, we used the fact that if $\pi-1$ is divisible by certain $\mathfrak{s} \subset \mathbb{Z}[i]$ with $\omega(\|\mathfrak{s}\|)=k$, then $\|\pi-1\|$ will have at least $k>\gamma \log _{2} x$ prime factors. The case $0<\gamma<1$ is requires more care: We need to ensure that the quantity $\|\pi-1\| /\|\mathfrak{s}\|$ does not have too many prime factors.

Lemma 4.4. For any $\mathfrak{s} \subset \mathbb{Z}[i]$ satisfying properties A through F listed below Theorem 4.1, we have

$$
\#\left\{\pi \in \mathcal{M}_{\mathfrak{s}}: \omega\left(\frac{\|\pi-1\|}{\|\mathfrak{s}\|}\right)>\frac{\log _{2} x}{\log _{4} x}\right\} \ll \frac{x}{\|\mathfrak{s}\|(\log x)^{A}}
$$

Upon discarding those π counted by the above lemma, the remaining π will have the property that $\omega(\|\pi-1\|) \in\left[k, k+\log _{2} x / \log _{4} x\right]$. Choosing k to be the greatest integer strictly less than $\gamma \log _{2} x-\log _{2} x / \log _{4} x$ ensures that $\|\pi-1\|<\gamma \log _{2} x$.
Proof of Lemma 4.4. We begin with the observation that, for any $\mathfrak{s} \subset \mathbb{Z}[i]$ under consideration and $\pi \in \mathcal{M}_{\mathfrak{s}}$, we have $\|\pi-1\| /\|\mathfrak{s}\| \leq 2 x /\|\mathfrak{s}\|$. Therefore, we estimate

Noting that $\omega(\|\mathfrak{a}\|) \leq \omega(\mathfrak{a})$ for any $\mathfrak{a} \subset \mathbb{Z}[i]$, by Theorem 2.3 and Stirling's formula, we have

$$
\begin{aligned}
& \leq \sum_{\ell>\log _{2} x / \log _{4} x} \frac{1}{\ell!}\left(\sum_{x^{1 / 100} \log _{2} x \leq\|\mathfrak{p}\| \leq \frac{2 x}{\|s\|}} \sum_{m=1}^{\infty} \frac{1}{\|\mathfrak{p}\|^{m}}\right)^{\ell} \\
& \ll \sum_{\ell>\log _{2} x / \log _{4} x}\left(\frac{e \log _{3} x+O(1)}{\ell}\right)^{\ell} .
\end{aligned}
$$

For each $\ell>\log _{2} x / \log _{4} x$, we have $\left(e \log _{3} x+O(1)\right) / \ell<1 / 2$. Thus

$$
\begin{aligned}
\sum_{\ell>\log _{2} x / \log _{4} x}\left(\frac{e \log _{3} x+O(1)}{\ell}\right)^{\ell} & \ll\left(\frac{e \log _{3} x+O(1)}{\left\lfloor\log _{2} x / \log _{4} x\right\rfloor+1}\right)^{\left\lfloor\log _{2} x / \log _{4} x\right\rfloor+1} \\
& \ll\left(\frac{1}{\left(\log _{2} x\right)^{1+o(1)}}\right)^{\log _{2} x / \log _{4} x} \ll e^{-2 \log _{2} x \log _{3} x / \log _{4} x} .
\end{aligned}
$$

This last expression is smaller than $(\log x)^{-A}$, for any $A>0$. Therefore, for any fixed A >0,

$$
\#\left\{\pi \in \mathcal{M}_{\mathfrak{s}}: \omega\left(\frac{\|\pi-1\|}{\|\mathfrak{s}\|}\right)>\frac{\log _{2} x}{\log _{4} x}\right\} \ll \frac{x}{\|\mathfrak{s}\|(\log x)^{A}}
$$

Write

$$
\mathcal{M}_{\mathfrak{s}}^{\prime}=\left\{\pi \in \mathcal{M}_{\mathfrak{s}}: \omega\left(\frac{\|\pi-1\|}{\|\mathfrak{s}\|}\right) \leq \frac{\log _{2} x}{\log _{4} x}\right\} .
$$

Lemmas 4.2 and 4.4 show that $\# \mathcal{M}_{\mathfrak{s}}^{\prime}$ satisfies

$$
\begin{aligned}
\# \mathcal{M}_{\mathfrak{s}}^{\prime} \geq c \cdot \frac{x \log _{2} x}{\Phi(\mathfrak{s})(\log x)^{2}} & +O\left(\sum_{\substack{\mathfrak{u} \mid \mathfrak{F} \\
\omega(\mathfrak{u}) \leq m}} \mid r(\mathfrak{u s)} \mid)\right. \\
& +O\left(\frac{1}{\Phi(\mathfrak{s})} \frac{\operatorname{Li}(x)}{(\log x)^{22}}\right)+O\left(\frac{x}{\|\mathfrak{s}\|(\log x)^{A}}\right)+O(\sqrt{x})
\end{aligned}
$$

for any $A>0$. Here, all quantities are defined as in the previous section. Just as before, we sum this quantity over $\mathfrak{s} \subset \mathbb{Z}[i]$ satisfying conditions A through F listed below Theorem 4.1. Letting ' on a sum indicate a restriction to such \mathfrak{s}, we have, by the same calculations as before,

$$
\mathcal{M}^{\prime} \gg \frac{x \log _{2} x\left(\log _{2} x+O\left(\log _{3} x\right)\right)^{k-1}}{(k-1)!(\log x)^{2}}
$$

where

$$
\mathcal{M}^{\prime}=\sum_{\mathfrak{s}}^{\prime} \# \mathcal{M}_{\mathfrak{s}}^{\prime} .
$$

Recall that k is chosen to be the largest integer strictly less than $\gamma \log _{2} x-\log _{2} x / \log _{4} x$; then by Stirling's formula,

$$
\begin{aligned}
\frac{\left(\log _{2} x+O\left(\log _{3} x\right)\right)^{k-1}}{(k-1)!} & \gg \frac{1}{\sqrt{\log _{2} x}}\left(\frac{e \log _{2} x+O\left(\log _{3} x\right)}{k-1}\right)^{k-1} \\
& \gg \frac{1}{\sqrt{\log _{2} x}}\left(\frac{e}{\gamma}\left(1+O\left(\frac{1}{\log _{4} x}\right)\right)^{\gamma \log _{2} x-\log _{2} x / \log _{4} x-1}\right. \\
& \gg(\log x)^{\gamma \log \gamma-\gamma+o(1)} .
\end{aligned}
$$

A final assembly of estimates yields Theorem 4.1 in the case $0<\gamma<1$.

References

[Coj05] A. C. Cojocaru, Reductions of an elliptic curve with almost prime orders, Acta Arith. 119 (2005), no. 3, 265-289.
[dB66] N. G. de Bruijn, On the number of positive integers $\leq x$ and free of prime factors $>y$. II, Indag. Math. 28 (1966), 239 - 247.
[EN79] P. Erdős and J-L. Nicolas, Sur la fonction nombre de facteurs premiers de n, Séminaire Delange-Pisot-Poitou. Théorie des nombres 20 (1978-1979), no. 2, 1-19.
[HR83] H. Halberstam and K. F. Roth, Sequences, second ed., Springer-Verlag, New York-Berlin, 1983.
[Hux71] M. N. Huxley, The large sieve inequality for algebraic number fields. III. Zero-density results, J. London Math. Soc. (2) 3 (1971), 233-240.
[HW00] G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, fifth ed., Oxford University Press, Oxford, 2000.
[JU08] J. Jiménez Urroz, Almost prime orders of CM elliptic curves modulo p, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 5011, Springer, Berlin, 2008, pp. 74-87.
[Liu06] Y-R. Liu, Prime analogues of the Erdős-Kac theorem for elliptic curves, J. Number Theory 119 (2006), no. 2, 155-170.
[Pol09] P. Pollack, Not always buried deep, American Mathematical Society, Providence, RI, 2009.
[Polar] , A Titchmarsh divisor problem for elliptic curves, Math. Proc. Cambridge Philos. Soc. (to appear).
[Ros99] M. Rosen, A generalization of Mertens' theorem, J. Ramanujan Math. Soc. 14 (1999), no. 1, 1-19.

Department of Mathematics, Boyd Graduate Studies Research Center, University of Georgia, Athens, GA 30602, USA

E-mail address: ltroupe@math.uga.edu

[^0]: The author was partially supported by NSF RTG Grant DMS-1344994.

