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Abstract. In this paper, we investigate extreme values of ω(#E(Fp)), where E/Q is an
elliptic curve with complex multiplication and ω is the number-of-distinct-prime-divisors
function. For fixed γ > 1, we prove that

#{p ≤ x : ω(#E(Fp)) > γ log log x} =
x

(log x)2+γ log γ−γ+o(1) .

The same result holds for the quantity #{p ≤ x : ω(#E(Fp)) < γ log log x} when
0 < γ < 1. The argument is worked out in detail for the curve E : y2 = x3 − x, and we
discuss how the method can be adapted for other CM elliptic curves.

1. Introduction

Let E/Q be an elliptic curve. For primes p of good reduction, one has

E(Fp) ' Z/dpZ⊕ Z/epZ
where dp and ep are uniquely determined natural numbers such that dp divides ep. Thus,
#E(Fp) = dpep. We concern ourselves with the behavior ω(#E(Fp)), where ω(n) denotes
the number of distinct prime factors of the number n, as p varies over primes of good
reduction. Work has been done already in this arena: If the curve E has CM, Cojocaru
[Coj05, Corollary 6] showed that the normal order of ω(#E(Fp)) is log log p, and a year
later, Liu [Liu06] established an elliptic curve analogue of the celebrated Erdős - Kac
theorem: For any elliptic curve E/Q with CM, the quantity

ω(#E(Fp))− log log p√
log log p

has a Gaussian normal distribution. In particular, ω(#E(Fp)) has normal order log log p
and standard deviation

√
log log p. (These results hold for elliptic curves without CM, if

one assumes GRH.)
In light of the Erdős - Kac theorem, one may ask how often ω(n) takes on extreme

values, e.g. values greater than γ log log n, for some fixed γ > 1. A more precise version
of the following result appears in [EN79]; its proof is due to Delange.

Theorem 1.1. Fix γ > 1. As x→∞,

#{n ≤ x : ω(n) > γ log log x} =
x

(log x)1+γ log γ−γ+o(1)
.

Presently, we establish an analogous theorem for the quantity ω(#E(Fp)), where E/Q
is an elliptic curve with CM.

Theorem 1.2. Let E/Q be an elliptic curve with CM. For γ > 1 fixed,

#{p ≤ x : ω(#E(Fp)) > γ log log x} =
x

(log x)2+γ log γ−γ+o(1)
.

The same statement is true for the quantity #{p ≤ x : ω(#E(Fp)) < γ log log x} when
0 < γ < 1.
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In what follows, the above theorem will be proved for E/Q with E : y2 = x3 − x.
Essentially the same method can be used for any elliptic curve with CM; refer to the
discussion in §4 of [Polar]. To establish the theorem, we prove corresponding upper and
lower bounds in sections §3 and §4, respectively.

Remark. One can ask similar questions about other arithmetic functions applied to
#E(Fp). For example, Pollack has shown [Polar] that, if E has CM, then∑′

p≤x

τ(#E(Fp)) ∼ cE · x,

where the sum is restricted to primes p of good ordinary reduction for E. Several elements
of Pollack’s method of proof will appear later in this manuscript.

Notation. K will denote an extension of Q with ring of integers ZK . For each ideal
a ⊂ ZK , we write ‖a‖ for the norm of a (that is, ‖a‖ = #ZK/a) and Φ(a) = #(ZK/a)×.
The function ω applied to an ideal a ⊂ ZK will denote the number of distinct prime ideals
appearing in the factorization of a into a product of prime ideals. For α ∈ ZK , ‖α‖ and
Φ(α) denote those functions evaluated at the ideal (α). If α is invertible modulo an ideal
u ⊂ ZK , we write gcd(α, u) = 1. The notation logk x will be used to denote the kth iterate
of the natural logarithm; this is not to be confused with the base-k logarithm. The letters
p and q will be reserved for rational prime numbers. We make frequent use of the notation
�,� and O-notation, which has its usual meaning. Other notation may be defined as
necessary.
Acknowledgements. The author thanks Paul Pollack for a careful reading of this
manuscript and many helpful suggestions.

2. Useful propositions

One of our primary tools will be a version of Brun’s sieve in number fields. The following
theorem can be proved in much the same way that one obtains Brun’s pure sieve in the
rational integers, cf. [Pol09, §6.4].

Theorem 2.1. Let K be a number field with ring of integers ZK. Let A be a finite
sequence of elements of ZK, and let P be a finite set of prime ideals. Define

S(A,P) := #{a ∈ A : gcd(a,P) = 1}, where P :=
∏
p∈P

p.

For an ideal u ⊂ ZK, write Au := #{a ∈ A : a ≡ 0 (mod u)}. Let X denote an
approximation to the size of A. Suppose δ is a multiplicative function taking values in
[0, 1], and define a function r(u) such that

Au = Xδ(u) + r(u)

for each u dividing P. Then, for every even m ∈ Z+,

S(A,P) = X
∏
p∈P

(1− δ(p)) +O

( ∑
u|P, ω(u)≤m

|r(u)|
)

+O

(
X

∑
u|P, ω(u)≥m

δ(u)

)
.

All implied constants are absolute.

In our estimation of O-terms arising from the use of Proposition 2.1, we will make
frequent use of the following analogue of the Bombieri-Vinogradov theorem, which we
state for an arbitrary imaginary quadratic field K/Q with class number 1. For α ∈ ZK
and an ideal q ⊂ ZK , write

π(x; q, α) = #{µ ∈ ZK : ‖µ‖ ≤ x, µ ≡ α (mod q)}.
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Proposition 2.2. For every A > 0, there is a B > 0 so that∑
‖q‖≤x1/2(log x)−B

max
α:gcd(α,u)=1

max
y≤x
|π(y; q, α)− wK ·

Li(y)

Φ(q)
| � x

(log x)A
,

where the above sum and maximum are taken over q ⊂ ZK and α ∈ ZK . Here wK denotes
the size of the group of units of ZK

The above follows from Huxley’s analogue of the Bombieri-Vinogradov theorem for
number fields [Hux71]; see the discussion in [Polar, Lemma 2.3].

The following proposition is an analogue of Mertens’ theorem for imaginary quadratic
fields. It follows immediately from Theorem 2 of [Ros99].

Proposition 2.3. Let K/Q be an imaginary quadratic field and let αK denote the residue
of the associated Dedekind zeta function, ζK(s), at s = 1. Then∏

‖p‖≤x

(
1− 1

‖p‖

)−1

∼ eγαK log x,

where the product is over all prime ideals p in ZK. Here (and only here), γ is the
Euler-Mascheroni constant.

Note also that the “additive version” of Mertens’ theorem, i.e.,∑
‖p‖≤x

1

‖p‖
= log2 x+BK +OK

(
1

log x

)
for some constant BK , holds in this case as well; it appears as Lemma 2.4 in [Rosen].

Finally, we will make use of the following estimate for elementary symmetric functions
[HR83, p. 147, Lemma 13].

Lemma 2.4. Let y1, y2, . . . , yM be M non-negative real numbers. For each positive integer
d not exceeding M , let

σd =
∑

1≤k1<k2<···<kd≤M

yk1yk2 · · · ykd ,

so that σd is the dth elementary symmetric function of the yk’s. Then, for each d, we have

σd ≥
1

d!
σd1

(
1−

(
d

2

)
1

σ2
1

M∑
k=1

y2
k

)
.

3. An upper bound

Theorem 3.1. Let E be the elliptic curve E : y2 = x3 − x and fix γ > 1. Then

#{p ≤ x : ω(#E(Fp)) > γ log2 x} �γ
x(log2 x)5

(log x)2+γ log γ−γ .

The same statement is true if instead 0 < γ < 1 and the strict inequality is reversed on
the left-hand side.

Before proving Theorem 3.1, we refer to [JU08, Table 2] for the following useful fact
concerning the numbers #E(Fp): For primes p ≤ x with p ≡ 1 (mod 4), we have

#E(Fp) = p+ 1− (π + π) = (π − 1)(π − 1),(1)

where π ∈ Z[i] is chosen so that p = ππ and π ≡ 1 (mod (1 + i)3). (Such π are sometimes
called primary.) This determines π completely up to conjugation.

We begin the proof of Theorem 3.1 with the following lemma, which will allow us to
disregard certain problematic primes p.
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Lemma 3.2. Let x ≥ 3 and let P (n) denote the largest prime factor of n. Let X denote
the set of n ≤ x for which either of the following properties fail:

(i) P (n) > x1/6 log2 x

(ii) P (n)2 - n.

Then, for any A > 0, the size of X is O(x/(log x)A).

The following upper bound estimate of de Bruijn [dB66, Theorem 2] will be useful in
proving the above lemma.

Proposition 3.3. Let x ≥ y ≥ 2 satisfy (log x)2 ≤ y ≤ x. Whenever u := log x
log y
→∞, we

have
Ψ(x, y) ≤ x/uu+o(u).

Proof of Lemma 3.2. If n ∈ X , then either (a) P (n) ≤ x1/6 log2 x or (b) P (n) > x1/6 log2 x

and P (n)2 | n. By Proposition 3.3, the number of n ≤ x for which (a) holds is O(x/(log x)A)
for any A > 0, noting that (log x)A � (log x)log3 x = (log2 x)log2 x. The number of n ≤ x
for which (b) holds is

� x
∑

p>x1/6 log2 x

p−2 � x exp(− log x/6 log2 x),

and this is also O(x/(log x)A). �

We would like to use Lemma 3.2 to say that a negligible amount of the numbers #E(Fp),
for p ≤ x, belong to X . The following lemma allows us to do so.

Lemma 3.4. The number of p ≤ x with #E(Fp) ∈ X is O(x/(log x)B), for any B > 0.

Proof. Suppose #E(Fp) = b ∈ X . Then, by (1), b = ‖π− 1‖, where π ∈ Z[i] is a Gaussian
prime lying above p. Thus, the number of p ≤ x with #E(Fp) = b is bounded from above
by the number of Gaussian integers with norm b, which, by [HW00, Theorem 278], is
4
∑

d|b χ(d), where χ is the nontrivial character modulo 4. Now, using the Cauchy-Schwarz
inequality and Lemma 3.2,

4
∑
b∈X

∑
d|b

χ(d) ≤ 4
∑
b∈X

τ(b) ≤ 4
(∑
b∈X

1
)1/2(∑

b∈X

τ(b)2
)1/2

�
( x

(log x)A

)1/2(
x log3 x

)1/2

=
x

(log x)A/2−3/2
.

Since A > 0 can be chosen arbitrarily, this completes the proof. �

For k a nonnegative integer, define Nk to be the number of primes p ≤ x of good
ordinary reduction for E such that #E(Fp) possesses properties (i) and (ii) from the
above lemma and such that ω(#E(Fp)) = k. Then, in the case when γ > 1,

#{p ≤ x : ω(#E(Fp)) > γ log log x} =
∑

k>γ log2 x

Nk +O
( x

(log x)A

)
for any A > 0. Our task is now to bound Nk from above in terms of k. Evaluating the
sum on k then produces the desired upper bound.

It is clear that

Nk ≤
∑

a≤x1−1/6 log2 x

ω(a)=k−1

∑
p≤x

p≡1 (mod 4)
a|#E(Fp)

#E(Fp)/a prime

1.(2)
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To handle the inner sum, we need information on the integer divisors of #E(Fp), where
p ≤ x and p ≡ 1 (mod 4). We employ the analysis of Pollack in his proof of [Polar,
Theorem 1.1], which we restate here for completeness.

By (1), we have a | #E(Fp) if and only if a | (π − 1)(π − 1) = ‖π − 1‖. With this in
mind, we have ∑

a≤x1−1/6 log log x

ω(a)=k−1

∑
p≤x

p≡1 (mod 4)
a|#E(Fp)

#E(Fp)/a prime

1 =
1

2

∑
a≤x1−1/6 log log x

ω(a)=k−1

∑′

π : ‖π‖≤x
π≡1 (mod (1+i)3)

a|‖π−1‖
‖π−1‖/a prime

1,

where the ′ on the sum indicates a restriction to primes π lying over rational primes p ≡ 1
(mod 4).

3.1. Divisors of shifted Gaussian primes. The conditions on the primed sum above
can be reformulated purely in terms of Gaussian integers.

Definition 3.5. For a given integer a ∈ N, write a =
∏

q q
vq , with each q prime. For each

q | a with q ≡ 1 (mod 4), write q = πqπq. Define a set Sa which consists of all products α
of the form

α = (1 + i)v2
∏
q|a

q≡3 (mod 4)

qdvq/2e
∏
q|a

q≡1 (mod 4)

αq,

where αq ∈ {πiqπ
vq−i
q : i = 0, 1, . . . , vq}.

Notice that the condition a | ‖π − 1‖ is equivalent to π − 1 being divisible by some
element of the set Sa. We can therefore write∑

a≤x1−1/6 log log x

ω(a)=k−1

∑
p≤x

p≡1 (mod 4)
a|#E(Fp)

#E(Fp)/a prime

1 ≤ 1

2

∑
a≤x1−1/6 log log x

ω(a)=k−1

∑
α∈Sa

∑′

π : ‖π‖≤x
π≡1 (mod (1+i)3)

α|π−1
‖π−1‖/a prime

1.(3)

Now, for any α ∈ Sa, we have

αα = a
∏

q≡3 (mod 4)

q2dvq/2e−vq .

Observe that

‖π − 1‖
a

=
(π − 1)(π − 1)

αα

∏
q≡3 (mod 4)

q2dvq/2e−vq .

Therefore, if ‖π−1‖
a

is to be prime, the number a must satisfy exactly one of the following
properties:

1. The number a is divisible by exactly one prime q ≡ 3 (mod 4) with vq an odd
number, and α = u(π − 1) where u ∈ Z[i] is a unit; or

2. All primes q ≡ 3 (mod 4) which divide a have vq even, and (π − 1)/α is a prime
in Z[i].

This splits the outer sum in (3) into two components.

Lemma 3.6. We have ∑[

a≤x1−1/6 log log x

ω(a)=k−1

∑
α∈Sa

∑′

π : ‖π‖≤x
π≡1 (mod (1+i)3)

(π−1)/α∈U

1 = O

(
x

logA x

)
,
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where U is the set of units in Z[i] and the [ on the outer sum indicates a restriction to
integers a such that there is a unique prime power qvq‖a with q ≡ 3 (mod 4) and vq odd.

Proof. If α = u(π− 1) for u ∈ U , then there are at most four choices for π, given α. Thus∑[

a≤x1−1/6 log log x

ω(a)=k−1

∑
α∈Sa

∑′

π : ‖π‖≤x
π≡1 (mod (1+i)3)

α=u(π−1)

1 ≤ 4
∑[

a≤x1−1/6 log log x

ω(a)=k−1

|Sa|.

We have |Sa| =
∏

q≡1 (mod 4)(vq + 1); this is bounded from above by the divisor function

on a, which we denote τ(a). Therefore, the above is

�
∑

a≤x1−1/6 log log x

τ(a)� x1−1/6 log2 x(log x),

which is O(x/ logA x) for any A > 0. �

The second case provides the main contribution to the sum.

Lemma 3.7. Let a ≤ x1−1/6 log log x with ω(a) = k − 1 such that all primes q ≡ 3 (mod 4)
dividing a have vq even. Let α ∈ Sa. Then∑′

π : ‖π‖≤x
π≡1 (mod (1+i)3)

α|π−1
(π−1)/α prime

1� x(log2 x)5

‖α‖(log x)2

uniformly over all a as above and α ∈ Sa.

Proof. If π ≡ 1 (mod α), then π = 1 + αβ for some β ⊂ Z[i]. Thus β = π−1
α

, and so

‖β‖ ≤ 2x
‖α‖ . Let A denote the sequence of elements in Z[i] given by{

β(1 + αβ) : ‖β‖ ≤ 2x

‖α‖

}
.

Define P = {p ⊂ Z[i] : ‖p‖ ≤ z} where z is a parameter to be chosen later. Then, in the
notation of Theorem 2.1, ∑′

π : ‖π‖≤x
π≡1 (mod (1+i)3)

α|π−1
(π−1)/α prime

1 ≤ S(A,P) +O(z).

Here, the O(z) term comes from those π ∈ Z[i] such that both π and (π− 1)/α are primes
of norm less than z.

For u ⊂ Z[i], write Au = #{a ∈ A : a ≡ 0 (mod u)}. An element a ∈ A is counted by
Au if and only if a generator of u divides a. Thus, by familiar estimates on the number of
integer lattice points contained in a circle, Au satisfies the equation

Au =
2πx

‖α‖
ν(u)

‖u‖
+O

(
ν(u)

√
x

(‖α‖‖u‖)1/2

)
,

where
ν(u) = #{β (mod u) : β(1 + αβ) ≡ 0 (mod u)}.

We apply Theorem 2.1 with

X =
2πx

‖α‖
and δ(u) =

ν(u)

‖u‖
.
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With these choices, we have

r(u) = O
(
ν(u)

√
x

(‖α‖‖u‖)1/2|

)
.

Then, for any even integer m ≥ 0,

S(A,P) =
2πx

‖α‖
∏
‖p‖≤z

(
1−ν(p)

‖p‖

)
+O

( √
x

‖α‖1/2

∑
u|P

ω(u)≤m

ν(u)

‖u‖1/2

)
(4)

+O

(
x

‖α‖
∑
u|P

ω(u)≥m

δ(u)

)
,

where P =
∏

p∈P p.
For a prime p, we have ν(p) = 2 if α 6≡ 0 (mod p) and ν(p) = 1 otherwise. Therefore,

the product in the first term is∏
‖p‖≤z
p-(α)

(
1− 2

‖p‖

) ∏
‖p‖≤z
p|(α)

(
1− 1

‖p‖

)

≤
∏
‖p‖≤z

(
1− 1

‖p‖

)2 ∏
‖p‖≤z
p|(α)

(
1− 1

‖p‖

)−1

� 1

(log z)2

‖α‖
Φ(α)

,

where in the last step we used Proposition 2.3.

Choose z = x
1

200(log2 x)
2 . Then our first term in (4) is

� x(log2 x)4

Φ(α)(log x)2
.

Recall that ‖α‖ = a, and a ≤ x1−1/6 log2 x. Since Φ(α) � ‖α‖/ log2 x (analogous to the
minimal order for the usual Euler function, c.f. [HW00, Theorem 328]), the above is

� x(log2 x)5

‖α‖(log x)2
.

We now show that this “main” term dominates the two O-terms uniformly for α ∈ Sa
and a ≤ x1−1/6 log2 x. For the first O-term, we begin by noting that ν(u)/‖u‖1/2 � 1.
Then, taking m = 10blog2 xc, we have∑

u|P
ω(u)≤m

ν(u)

‖u‖1/2
�

m∑
k=0

(
πK(z)

k

)
≤

m∑
k=0

πK(z)k ≤ 2πK(z)m ≤ x1/20 log2 x,

where πK(z) denotes the number of prime ideals p ⊂ Z[i] with norm up to z. Therefore,
the inequality

x(log2 x)5

‖α‖(log x)2
� x1/2+1/20 log2 x

‖α‖1/2

holds for all α with ‖α‖ ≤ x1−1/6 log2 x, as desired.
Next we handle the second O-term. The sum in this term is∑

u|P
ω(u)≥m

δ(u) ≤
∑
s≥m

1

s!

( ∑
‖p‖≤z

ν(p)

‖p‖

)s
.
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Observe that, by Proposition 2.3, we have∑
‖p‖≤z

ν(p)

‖p‖
≤ 2 log2 x+O(1).

Thus, by the ratio test, one sees that the sum on s is

� 1

m!
(2 log2 x+O(1))m.

Using Proposition 2.3 followed by Stirling’s formula, we obtain that the above quantity is

1

m!
(2 log2 x+O(1))m ≤

(2e log2 x+O(1)

10blog2 xc

)10blog2 xc

�
(e

5

)9 log2 x

≤ 1

(log x)5
.

So the second O-term is

� x

‖α‖(log x)5
,

and this is certainly dominated by the main term. �

From Lemmas 3.6 and 3.7, we see (2) can be rewritten

Nk �
x(log2 x)5

(log x)2

∑
a≤x1−1/6 log2 x

ω(a)=k−1

|Sa|
a

+O
( x

logA x

)
,

noting that ‖α‖ = a for all a under consideration and all α ∈ Sa. We are now in a position
to bound Nk from above in terms of k.

Lemma 3.8. We have ∑
a≤x1−1/6 log2 x

ω(a)=k−1

|Sa|
a
≤ (log2 x+O(1))k−1

(k − 1)!
.

Proof. We have already seen that the size of Sa is
∏

p|a:p≡1 (mod 4)(vp + 1), where vp is

defined by pvp ‖ a. Recall that in the current case, each prime p ≡ 3 (mod 4) dividing a
appears to an even power. Therefore, we have

∑
a≤x

ω(a)=k−1

|Sa|
a
≤ 1

(k − 1)!

( ∑
p`≤x

p 6≡3 (mod 4)

|Sp` |
p`

+
∑
p2k≤x

p≡3 (mod 4)

|Sp2k |
p2k

+O(1)

)k−1

.(5)

Note that |Sp2k | = 1 for each prime p ≡ 3 (mod 4). Thus we can absorb the sum
corresponding to these primes into the O(1) term, giving

∑
a≤x

ω(a)=k−1

|Sa|
a
� 1

(k − 1)!

( ∑
p`≤x

p 6≡3 (mod 4)

|Sp` |
p`

+O(1)

)k−1

.(6)
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Now ∑
p`≤x

p 6≡3 (mod 4)

|Sp` |
p`

=
∑
p`≤x

p≡1 (mod 4)

`+ 1

p`
+O(1)

=
∑
p≤x

p≡1 (mod 4)

2

p
+O(1)

= log2 x+O(1).

Inserting this expression into (6) proves the lemma. �

3.2. Finishing the upper bound. We have shown so far that

Nk �
x(log2 x)5

(log x)2
· (log2 x+O(1))k−1

(k − 1)!
.

We now sum on k > γ log2 x for fixed γ > 1 to complete the proof of Theorem 3.1.
(The statement corresponding to 0 < γ < 1 may be proved in a completely similar way.)
Again using the ratio test and Stirling’s formula, we have∑

k>γ log2 x

(log2 x+O(1))k−1

(k − 1)!
�
(
e log2 x+O(1)

bγ log2 xc

)bγ log2 xc

�
(
e

γ

(
1 +O

( 1

log2 x

)))bγ log2 xc

�
( e
γ

)bγ log2 xc
�γ (log x)γ−γ log γ.

Thus, we have obtained an upper bound of

�γ
x(log2 x)5

(log x)2+γ log γ−γ ,

as desired.

4. A lower bound

Theorem 4.1. Consider E : y2 = x3 − x and fix γ > 1. Then

#{p ≤ x : ω(#E(Fp)) > γ log2 x} ≥
x

(log x)2+γ log γ−γ+o(1)
.

The same statement is true if instead 0 < γ < 1 and the strict inequality is reversed on
the left-hand side.

Our strategy in the case γ > 1 is as follows. As before, we write #E(Fp) = ‖π − 1‖,
where π ≡ 1 (mod (1 + i)3) and p = ππ. Let k be an integer to be specified later and fix
an ideal s ∈ Z[i] with the following properties:

(A) ((1 + i)3) | s
(B) ω(s) = k
(C) P+(‖s‖) ≤ x1/100γ log2 x

(D) Each prime ideal p | s (with the exception of (1 + i)) lies above a rational prime
p ≡ 1 (mod 4)

(E) Distinct p dividing s lie above distinct p
(F) s squarefree

Here P+(n) denotes the largest prime factor of n. Note that we have ω(s) = ω(‖s‖). First,
we will estimate from below the size of the set Ms, defined to be the set of those π ∈ Z[i]
with ‖π‖ ≤ x satisfying the following properties:
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(1) π prime (in Z[i])
(2) ‖π‖ prime (in Z)
(3) π ≡ 1 (mod s)

(4) P−
(
‖π−1‖
‖s‖

)
> x1/100γ log2 x.

Here P−(n) denotes the smallest prime factor of n. The conditions on the size of the
prime factors of ‖s‖ and ‖π − 1‖/‖s‖ imply that each π with ‖π‖ ≤ x belongs to at most
one of the sets Ms. If k is chosen to be greater than γ log2 x, then carefully summing
over s satisfying the conditions above yields a lower bound on the count of distinct π
corresponding to p with the property that ω(#E(Fp)) ≥ k > γ log2 x. The problem of
counting elements π and π with p = ππ is remedied by inserting a factor of 1

2
, which is of

no concern for us.
More care is required in the case 0 < γ < 1, which is handled in Section 4.3.

4.1. Preparing for the proof of Theorem 4.1. Suppose the fixed ideal s is generated
by σ ∈ Z[i]. We will estimate from below the size of Ms using Theorem 2.1. Define A to
be the sequence of elements of Z[i] of the form{π − 1

σ
: ‖π‖ ≤ x, π prime, and π ≡ 1 (mod σ)

}
.

Let P denote the set of prime ideals {p : ‖p‖ ≤ z}, where z := x1/50γ log2 x. Let P :=
∏

p∈P p.

If π−1
σ
≡ 0 (mod p) implies ‖p‖ ≥ z, then all primes p | ‖π−1

σ
‖ have p > x1/100γ log2 x. Note

also that if a prime π ∈ Z[i], ‖π‖ ≤ x is such that ‖π‖ is not prime, then ‖π‖ = p2 for
some rational prime p, and so the count of such π is clearly O(

√
x). Therefore, we have

#Ms ≥ S(A,P) +O(
√
x).

Lemma 4.2. With Ms defined as above, we have

#Ms ≥ c · Li(x) log2 x

Φ(s) log x
+O

( ∑
u|P

ω(u)≤m

|r(us)|
)

+O

(
1

Φ(s)

Li(x)

(log x)22

)
+O(

√
x),

where r(v) = |Li(x)
Φ(v)
− π(x; v, 1)| and c > 0 is a constant.

Proof. First, note that we expect the size of A to be approximately X := 4Li(x)
Φ(s)

. Write

Au = #{a ∈ A : u | a}. Then

Au = Xδ(u) + r(us),

where δ(u) = Φ(s)
Φ(us)

and r(us) = |4 Li(x)
Φ(us)
−π(x; us, 1)|. By Theorem 2.1, for any even integer

m ≥ 0 we have

S(A,P) = 4
Li(x)

Φ(s)

∏
‖p‖≤z

(
1− Φ(s)

Φ(ps)

)
+O

( ∑
u|P

ω(u)≤m

|r(us)|
)

+O

(
Li(x)

Φ(s)

∑
u|P

ω(u)≥m

δ(u)

)
.
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Using Proposition 2.3, we have∏
‖p‖≤z

(
1− Φ(s)

Φ(ps)

)
=
∏
‖p‖≤z
p-s

(
1− 1

Φ(p)

) ∏
‖p‖≤z
p|s

(
1− 1

‖p‖

)

=
∏
‖p‖≤z

(
1− 1

‖p‖

) ∏
‖p‖≤z
p-s

(
1− 1

(‖p‖ − 1)2

)

� 1

log z
=

log2 x

log x
.

Take m = 14blog2 xc. We leave aside the first O-term and concentrate for now on the
second. This term is handled in essentially the same way as in the proof of the upper
bound: The sum in the this term is bounded from above by∑

s≥m

1

s!

( ∑
‖p‖≤z

δ(p)
)s
.

By Proposition 2.3, we have ∑
‖p‖≤z

δ(p) ≤ log2 x+O(1).

Now, one sees once again by the ratio test that the sum on s is

� 1

m!

( ∑
‖p‖≤z

δ(p)
)m
≤ 1

m!
(log2 x+O(1))m.

Thus, by the same calculations as in the proof of Theorem 3.1, the second O-term is

� Li(x)

Φ(s)(log x)22
,

completing the proof of the lemma. �

We now sum this estimate over σ in an appropriate range to deal with the O-terms
and establish a lower bound. Here, the cases γ > 1 and 0 < γ < 1 diverge.

4.2. The case γ > 1. The argument in this case is somewhat simpler. Recall that
s is chosen to satisfy properties A through F listed below Theorem 4.1; in particular,
ω(s) = k for some integer k and P+(‖s‖) ≤ x1/100γ log2 x. Choose k := bγ log2 xc + 2.
Since ω(‖s‖) = ω(s), we have that ‖s‖ ≤ xk/100γ log2 x ≤ x1/10. A lower bound follows by
estimating the quantity

M =
∑′

s

#Ms,

where the prime indicates a restriction to those ideals s ⊂ Z[i] satisfying properties A
through F mentioned above.

Lemma 4.3. We have

M� x log2 x(log2 x+O(log3 x))k

k!(log x)2
.

Proof. Since
∑
‖s‖≤x 1/Φ(s)� log x, the second O-term in Lemma 4.2 is, upon summing

on s, bounded by a constant times Li(x)/(log x)21. The third error term, O(
√
x), is

therefore safely absorbed by this term.
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We now handle the sum over s of the first O-term. We have |r(us)| = |π(x; us, 1)−4 Li(x)
Φ(us)
|.

We can think of the double sum (over s and u) as a single sum over a modulus q, inserting
a factor of τ(q) to account for the number of ways of writing q as a product of two ideals
in Z[i]. (Here, τ(q) is the number of ideals in Z[i] which divide q.) Recalling our choice of
m = 14blog2 xc, we have∑

‖s‖≤x1/10

∑
u|P

ω(u)≤m

|r(us)| �
∑

‖q‖<x2/5

∣∣∣π(x; q, 1)− Li(x)

Φ(q)

∣∣∣ · τ(q).

The restriction ‖q‖ ≤ x2/5 comes from ‖s‖ ≤ x1/10 and ‖u‖ ≤ xm/50γ log2 x ≤ x.28, recalling
m = 14blog2 xc and γ > 1. Now, for all y > 0 and nonzero i ⊂ Z[i] we have π(y; i, 1)�
y/‖i‖; indeed, the same inequality is true with π(y; i, 1) replaced by the count of all proper
ideals ≡ 1 (mod i). Thus ∣∣∣π(x; q, 1)− 4

Li(x)

Φ(q)

∣∣∣� x

Φ(q)
.

Using this together with the Cauchy-Schwarz inequality and Proposition 2.2, we see that,
for any A > 0,∑

‖q‖<x2/5
|π(x; q, 1)− 4

Li(x)

Φ(q)
|τ(q)�

∑
‖q‖<x2/5

|π(x; q, 1)− 4
Li(x)

Φ(q)
|1/2
( x

Φ(q)

)1/2

τ(q)

�
(
x
∑

‖q‖<x2/5

τ(q)2

Φ(q)

)1/2( x

(log x)A

)1/2

.

We can estimate this sum using an Euler product:∑
‖q‖<x2/5

τ(q)2

Φ(q)
�

∏
‖p‖≤x2/5

(
1 +

4

‖p‖

)
≤ exp

{ ∑
‖p‖≤x2/5

4

‖p‖

}
� (log x)4.

Collecting our estimates, we see that the total error is at most x/(log x)A/2−2, which is
acceptable if A is chosen large enough.

For the main term, we need a lower bound for the sum

M =
∑′

s

1

Φ(s)
.(7)

Let I = (e(log2 x)2/k, x1/10k). Define a collection of prime ideals P such that each p ∈ P
lies above a prime p ≡ 1 (mod 4), each prime p ≡ 1 (mod 4) has exactly one prime ideal
lying above it in P, and ‖p‖ ∈ I. We apply Lemma 2.4, with the yi chosen to be of the
form 1/Φ(p) with p ∈ P , obtaining

1

Φ((1 + i)3)

∑′

s:p|(s/(1+i)3) =⇒ p∈P

1

Φ(s/(1 + i)3)
(8)

� 1

(k − 1)!

(∑
p∈P

1

Φ(p)

)k−1(
1−

(
k − 1

2

)( 1

S2
1

)∑
p∈P

1

Φ(p)2

)
,
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where

S1 =
∑
p∈P

1

Φ(p)
.

By Theorem 2.3, S1 = 1
2

log2 x − 2 log3 x + O(1). This introduces a factor of 1
2k−1 to

the right-hand side of (8), but this is of no concern: If each of the k prime factors of s,
excluding (1 + i), lies above a distinct prime p ≡ 1 (mod 4), then there are 2k−1 such
ideals s of a given norm. Thus, if we extend the sum on the left-hand side of (8) to range
over all s counted in primed sums (cf. the discussion above Lemma 4.3), we obtain

∑′

s

1

Φ(s)
≥ 2k−1

(k − 1)!

(
1

2
log2 x− 2 log3 x+O(1)

)k−1

×

(
1−

(
k − 1

2

)( 1

S2
1

)∑
p∈P

1

Φ(p)2

)
.

The quantity
(
k−1

2

)
is bounded from above by dγ log2 xe2, and the sum on 1/Φ(p)2 tends

to 0 as x→∞. Therefore,

1−
(
k − 1

2

)( 1

S2
1

)∑
p∈P

1

Φ(p)2
≥ 1− 4γ2

∑
p∈P

1

Φ(p)2
≥ 1

2

for large enough x, and so

x log2 x

(log x)2

∑′

s

1

Φ(s)
� x log2 x(log2 x+O(log3 x))k−1

(k − 1)!(log x)2
,

as desired. �

With k = bγ log2 xc + 2 and by the more precise version of Stirling’s formula n! ∼√
2πn(n/e)n, we have

(log2 x+O(log3 x))k−1

(k − 1)!
� 1√

log2 x

(
e log2 x+O(log3 x)

bγ log2 xc

)dγ log2 xe

=
1√

log2 x

(
e

γ

(
1 +O

( log3 x

log2 x

)))dγ log2 xe

= (log x)γ−γ log γ+o(1).

This yields a main term of the shape

x

(log x)2+γ log γ−γ+o(1)
,

which completes the proof of Theorem 4.1 in the case γ > 1.

4.3. The case 0 < γ < 1. Above, we used the fact that if π − 1 is divisible by certain
s ⊂ Z[i] with ω(‖s‖) = k, then ‖π − 1‖ will have at least k > γ log2 x prime factors. The
case 0 < γ < 1 is requires more care: We need to ensure that the quantity ‖π − 1‖/‖s‖
does not have too many prime factors.

Lemma 4.4. For any s ⊂ Z[i] satisfying properties A through F listed below Theorem
4.1, we have

#{π ∈Ms : ω

(
‖π − 1‖
‖s‖

)
>

log2 x

log4 x
} � x

‖s‖(log x)A
.
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Upon discarding those π counted by the above lemma, the remaining π will have the
property that ω(‖π − 1‖) ∈ [k, k + log2 x/ log4 x]. Choosing k to be the greatest integer
strictly less than γ log2 x− log2 x/ log4 x ensures that ‖π − 1‖ < γ log2 x.

Proof of Lemma 4.4. We begin with the observation that, for any s ⊂ Z[i] under consid-
eration and π ∈Ms, we have ‖π − 1‖/‖s‖ ≤ 2x/‖s‖. Therefore, we estimate∑

‖a‖≤ 2x
‖s‖

ω(‖a‖)>log2 x/ log4 x

P−(‖a‖)>x1/100γ log2 x

1 ≤ 2x

‖s‖
∑
‖a‖≤ 2x

‖s‖
ω(‖a‖)>log2 x/ log4 x

P−(‖a‖)>x1/100γ log2 x

1

‖a‖
.

Noting that ω(‖a‖) ≤ ω(a) for any a ⊂ Z[i], by Theorem 2.3 and Stirling’s formula, we
have ∑

‖a‖≤ 2x
‖s‖

ω(‖a‖)>log2 x/ log4 x

P−(‖a‖)>x1/100 log2 x

1

‖a‖
≤

∑
‖a‖≤ 2x

‖s‖
ω(a)>log2 x/ log4 x

P−(‖a‖)>x1/100 log2 x

1

‖a‖

≤
∑

`>log2 x/ log4 x

1

`!

( ∑
x1/100 log2 x≤‖p‖≤ 2x

‖s‖

∞∑
m=1

1

‖p‖m
)`

�
∑

`>log2 x/ log4 x

(e log3 x+O(1)

`

)`
.

For each ` > log2 x/ log4 x, we have (e log3 x+O(1))/` < 1/2. Thus∑
`>log2 x/ log4 x

(e log3 x+O(1)

`

)`
�
( e log3 x+O(1)

blog2 x/ log4 xc+ 1

)blog2 x/ log4 xc+1

�
( 1

(log2 x)1+o(1)

)log2 x/ log4 x

� e−2 log2 x log3 x/ log4 x.

This last expression is smaller than (log x)−A, for any A > 0. Therefore, for any fixed
A > 0,

#{π ∈Ms : ω

(
‖π − 1‖
‖s‖

)
>

log2 x

log4 x
} � x

‖s‖(log x)A
. �

Write

M′
s = {π ∈Ms : ω

(
‖π − 1‖
‖s‖

)
≤ log2 x

log4 x
}.

Lemmas 4.2 and 4.4 show that #M′
s satisfies

#M′
s ≥ c · x log2 x

Φ(s)(log x)2
+O

( ∑
u|P

ω(u)≤m

|r(us)|
)

+O

(
1

Φ(s)

Li(x)

(log x)22

)
+O

(
x

‖s‖(log x)A

)
+O(

√
x),

for any A > 0. Here, all quantities are defined as in the previous section. Just as before,
we sum this quantity over s ⊂ Z[i] satisfying conditions A through F listed below Theorem
4.1. Letting ′ on a sum indicate a restriction to such s, we have, by the same calculations
as before,

M′ � x log2 x(log2 x+O(log3 x))k−1

(k − 1)!(log x)2
,
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where
M′ =

∑′

s

#M′
s.

Recall that k is chosen to be the largest integer strictly less than γ log2 x− log2 x/ log4 x;
then by Stirling’s formula,

(log2 x+O(log3 x))k−1

(k − 1)!
� 1√

log2 x

(e log2 x+O(log3 x)

k − 1

)k−1

� 1√
log2 x

( e
γ

(
1 +O

( 1

log4 x

))γ log2 x−log2 x/ log4 x−1

� (log x)γ log γ−γ+o(1).

A final assembly of estimates yields Theorem 4.1 in the case 0 < γ < 1.
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