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ABSTRACT. In this paper, we investigate extreme values of w(#E(F,)), where E/Q is an
elliptic curve with complex multiplication and w is the number-of-distinct-prime-divisors
function. For fixed v > 1, we prove that

x

#{p <z :w(#E(Fp)) > yloglog} = (log 2)2F e 7o)

The same result holds for the quantity #{p < = : w(#E(F,)) < ~vloglogz} when
0 < v < 1. The argument is worked out in detail for the curve E : y?> = 23 — x, and we
discuss how the method can be adapted for other CM elliptic curves.

1. INTRODUCTION

Let E/Q be an elliptic curve. For primes p of good reduction, one has
E(F,) ~Z/d,Z & Z]e,Z

where d, and e, are uniquely determined natural numbers such that d, divides e,. Thus,
#E(F,) = dye,. We concern ourselves with the behavior w(#E(F,)), where w(n) denotes
the number of distinct prime factors of the number n, as p varies over primes of good
reduction. Work has been done already in this arena: If the curve £ has CM, Cojocaru
[Coj05, Corollary 6] showed that the normal order of w(#E(F,)) is loglogp, and a year
later, Liu [Liu06] established an elliptic curve analogue of the celebrated Erdés - Kac
theorem: For any elliptic curve E/Q with CM, the quantity

w(#E(F,)) — loglogp
Vl1oglogp

has a Gaussian normal distribution. In particular, w(#E(F,)) has normal order loglog p
and standard deviation y/loglogp. (These results hold for elliptic curves without CM, if
one assumes GRH.)

In light of the Erdds - Kac theorem, one may ask how often w(n) takes on extreme
values, e.g. values greater than vloglogn, for some fixed v > 1. A more precise version
of the following result appears in [ENT79]; its proof is due to Delange.

Theorem 1.1. Fiz v > 1. As x — o0,
x
lOg x>1+~/10g'y—7+o(1) :

#{n <z :w(n)>~yloglogz} = (

Presently, we establish an analogous theorem for the quantity w(#E(F,)), where £/Q
is an elliptic curve with CM.

Theorem 1.2. Let E/Q be an elliptic curve with CM. For v > 1 fized,

X
#p <@ w@BE) > loglos e} = (0o

The same statement is true for the quantity #{p < z : w(#E(F,)) < vloglogx} when
0<y <.

The author was partially supported by NSF RTG Grant DMS-1344994.
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2 LEE TROUPE

In what follows, the above theorem will be proved for £/Q with £ : y* = 23 — z.
Essentially the same method can be used for any elliptic curve with CM; refer to the
discussion in §4 of [Polar]. To establish the theorem, we prove corresponding upper and
lower bounds in sections §3 and §4, respectively.

Remark. One can ask similar questions about other arithmetic functions applied to
#E(F,). For example, Pollack has shown [Polar| that, if £ has CM, then

!/
Y T(H#E(F,)) ~cp -,
p<zT
where the sum is restricted to primes p of good ordinary reduction for E. Several elements
of Pollack’s method of proof will appear later in this manuscript.

Notation. K will denote an extension of Q with ring of integers Zg. For each ideal
a C Zg, we write ||a|| for the norm of a (that is, ||a|| = #Zk/a) and ®(a) = #(Zk/a)*.
The function w applied to an ideal a C Zj will denote the number of distinct prime ideals
appearing in the factorization of a into a product of prime ideals. For o € Z, ||| and
®(«) denote those functions evaluated at the ideal («). If « is invertible modulo an ideal
u C Zg, we write ged (o, u) = 1. The notation log, x will be used to denote the kth iterate
of the natural logarithm; this is not to be confused with the base-k logarithm. The letters
p and ¢ will be reserved for rational prime numbers. We make frequent use of the notation
<, > and O-notation, which has its usual meaning. Other notation may be defined as
necessary.

Acknowledgements. The author thanks Paul Pollack for a careful reading of this
manuscript and many helpful suggestions.

2. USEFUL PROPOSITIONS

One of our primary tools will be a version of Brun’s sieve in number fields. The following
theorem can be proved in much the same way that one obtains Brun’s pure sieve in the
rational integers, cf. [Pol09, §6.4].

Theorem 2.1. Let K be a number field with ring of integers Zy. Let A be a finite
sequence of elements of Zy, and let P be a finite set of prime ideals. Define

S(A,P):=#{a € A:gcd(a,B) =1}, where P := Hp.
peP

For an ideal w C Zy, write Ay, := #{a € A : a = 0 (modu)}. Let X denote an
approximation to the size of A. Suppose d is a multiplicative function taking values in
0,1], and define a function r(u) such that

Ay = X6(u) +r(u)
for each u dividing 3. Then, for every even m € 7,
S(AP) =X [ -d(p)+ o( > |r(u)]> + O(X > (5(u)).
peP ulPB, wu)<m ul P, w(u)>m
All implied constants are absolute.

In our estimation of O-terms arising from the use of Proposition 2.1, we will make
frequent use of the following analogue of the Bombieri-Vinogradov theorem, which we
state for an arbitrary imaginary quadratic field K/Q with class number 1. For a € Zg
and an ideal q C Zg, write

m(z;9,0) = #{p € L : ||pl <@,p= o (mod q)}.
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Proposition 2.2. For every A > 0, there is a B > 0 so that

3 ax (s, ) — g - 2
max max |7 , 70[ —w .
azged(a,u)=1 y<z yid ® (1)< )

log x)4’
llal|<z'/2(logz)~ B ( g )

where the above sum and maximum are taken over q C Zy and o € Zy. Here wi denotes
the size of the group of units of Zy

The above follows from Huxley’s analogue of the Bombieri-Vinogradov theorem for
number fields [Hux71]; see the discussion in [Polar, Lemma 2.3].

The following proposition is an analogue of Mertens’ theorem for imaginary quadratic
fields. It follows immediately from Theorem 2 of [Ros99].

Proposition 2.3. Let K/Q be an imaginary quadratic field and let e denote the residue
of the associated Dedekind zeta function, (x(s), at s = 1. Then

1 \—1
H <1 — —) ~ e aglog,
A

where the product is over all prime ideals p in Zyk. Here (and only here), v is the
FEuler-Mascheroni constant.

Note also that the “additive version” of Mertens’ theorem, i.e.,
Z ! log, v+ Bk + O ( L )
T = K K
ol ’ logx

for some constant By, holds in this case as well; it appears as Lemma 2.4 in [Rosen].
Finally, we will make use of the following estimate for elementary symmetric functions

[HR83, p. 147, Lemma 13].

Lemma 2.4. Let yi,vs, . ..,ynm be M non-negative real numbers. For each positive integer
d not exceeding M, let

0d = E Yk1Yko = " Yky»
1<k) <ko<--<kg<M

so that o4 is the dth elementary symmetric function of the yy’s. Then, for each d, we have

M

3. AN UPPER BOUND

Theorem 3.1. Let E be the elliptic curve E : y*> = 23 — x and fir v > 1. Then
z(log, x)°

#{p < v w(HE[,)) > vlogyz} <, (log ) 2+71oe 7=

The same statement is true if instead 0 < v < 1 and the strict inequality is reversed on
the left-hand side.

Before proving Theorem 3.1, we refer to [JUO8, Table 2] for the following useful fact
concerning the numbers #FE(F,): For primes p < x with p =1 (mod 4), we have

(1) #EWF,) =p+1—(r+7)=(r—1(r-1),

where 7 € Z[i] is chosen so that p = 77 and 7 = 1 (mod (1 +14)3). (Such 7 are sometimes
called primary.) This determines m completely up to conjugation.

We begin the proof of Theorem 3.1 with the following lemma, which will allow us to
disregard certain problematic primes p.
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Lemma 3.2. Let © > 3 and let P(n) denote the largest prime factor of n. Let X denote
the set of n < x for which either of the following properties fail:

(i) P(n) > g'/6los22
(i) P(n)*fn.
Then, for any A > 0, the size of X is O(z/(logz)?).
The following upper bound estimate of de Bruijn [dB66, Theorem 2] will be useful in
proving the above lemma.

Proposition 3.3. Let x >y > 2 satisfy (logx)? <y < z. Whenever u := log z

= — 00, we
logy ’

have
U(z,y) < x/utow,

Proof of Lemma 3.2. If n € X, then either (a) P(n) < z'/6°€2% or (b) P(n) > g!/6l0s22
and P(n)? | n. By Proposition 3.3, the number of n < z for which (a) holds is O(x/(log x)*)
for any A > 0, noting that (logz)? < (logx)"°&s® = (log, 2)'°¢2*. The number of n < z
for which (b) holds is

Lz Z p 2 < wexp(—logx/6log, x),
p>x1/610g2x
and this is also O(z/(log )%). O

We would like to use Lemma 3.2 to say that a negligible amount of the numbers #E(F,),
for p < x, belong to X. The following lemma allows us to do so.

Lemma 3.4. The number of p < x with #E(F,) € X is O(xz/(logx)®), for any B > 0.

Proof. Suppose #E(F,) =b € X. Then, by (1), b = |7 — 1||, where 7 € Z[i] is a Gaussian
prime lying above p. Thus, the number of p < x with #E(F,) = b is bounded from above
by the number of Gaussian integers with norm b, which, by [HW00, Theorem 278], is
43" b x(d), where x is the nontrivial character modulo 4. Now, using the Cauchy-Schwarz
inequality and Lemma 3.2,

4229((61) < 427’((7) < 4(Zl>1/2<27(b)2>1/2

beX dlb beX bex bex
T 1/2 5 \1/2 T
<(gmn) (16'%) " = gy
Since A > 0 can be chosen arbitrarily, this completes the proof. O

For k£ a nonnegative integer, define N; to be the number of primes p < x of good
ordinary reduction for E such that #E(F,) possesses properties (i) and (ii) from the
above lemma and such that w(#E(F,)) = k. Then, in the case when v > 1,

x
#lp <o WHE(E) > loglogr) = 30 Nt 0(")

k>~logy

for any A > 0. Our task is now to bound Nj from above in terms of k. Evaluating the
sum on k then produces the desired upper bound.
It is clear that

2) D S S

a§$1—1/610g2z p<lz
w(a)=k—1 p=1 (mod 4)
al#E(Fp)

#E(Fp)/a prime
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To handle the inner sum, we need information on the integer divisors of #FE(F,), where
p <z and p =1 (mod 4). We employ the analysis of Pollack in his proof of [Polar,
Theorem 1.1], which we restate here for completeness.

By (1), we have a | #E(F,) if and only if a | (m — 1)(7m — 1) = |7 — 1||. With this in

mind, we have
1
) 1= Y

aSwl—l/Gloglogz p<lx agxl—l/(iloglogz 7TZ||7T||§.1’

w(a)=k—1 p=1 (mod 4) w(a)=k—1 7=1 (mod (144)3)
al#E(Fp) all|r—1]]
#E(Fp)/a prime [[r—1]|/a prime

where the ' on the sum indicates a restriction to primes 7 lying over rational primes p = 1

(mod 4).

3.1. Divisors of shifted Gaussian primes. The conditions on the primed sum above
can be reformulated purely in terms of Gaussian integers.

Definition 3.5. For a given integer a € N, write a = [ | 4", with each ¢ prime. For each
q | awith ¢ =1 (mod 4), write ¢ = 7,7,. Define a set S, which consists of all products «

of the form
a=(1+41)" H qlve/?l H ayg,
qla qla
g=3 (mod 4) g=1 (mod 4)
where o, € {w;ﬂq*" ti=0,1,...,0.}.

Notice that the condition a | |7 — 1|| is equivalent to m — 1 being divisible by some
element of the set S,. We can therefore write

®) )DIEEED SIS D DD SEED S

a<g!=1/6loglogx p<z a<gl—1/6loglogz a€S, ||| <z
w(a)=k—1 p=1 (mod 4) w(a)=k—1 7=1 (mod (144)3)
al#E(F,) alm—1
#E(Fp)/a prime [[r—1||/a prime

Now, for any a € S,, we have
Oda =aqa H q2 [ULI/Q—' —Vq .
¢=3 (mod 4)
Observe that

20/ 2=,

1l G- 0ED
a oo
g=3 (mod 4)

Therefore, if ”%1” is to be prime, the number a must satisfy exactly one of the following
properties:

1. The number a is divisible by exactly one prime ¢ = 3 (mod 4) with v, an odd
number, and o = u(m — 1) where u € Z[i] is a unit; or
2. All primes ¢ = 3 (mod 4) which divide a have v, even, and (7 — 1)/« is a prime
in Z[i].
This splits the outer sum in (3) into two components.

Lemma 3.6. We have

b / X
SIED DD SENR T ]
asxlfl/ﬁloglogzaesa 7r;H7rHS:B Og X

w(a)=k—1 =1 (mod (1+4)3)
(r—1)/acU
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where U is the set of units in Z[i] and the b on the outer sum indicates a restriction to
integers a such that there is a unique prime power ¢"|la with ¢ =3 (mod 4) and v, odd.

Proof. If a = u(m — 1) for u € U, then there are at most four choices for 7, given o. Thus

)DIND DI DI EL IS DI 1]

agzlfl/(ﬂoglogz a€S, 7T:||7T||§33 agzlfl/Sloglogz
w(a)=k—1 m=1 (mod (144)3) w(a)=k—1
a=u(r—1)

We have |So| = [],=1 (mod 4)(vq + 1); this is bounded from above by the divisor function
on a, which we denote 7(a). Therefore, the above is

< Z 7(a) < zt71/0ee2%(log 1),

anl—l/Gloglogm
which is O(x/log” z) for any A > 0. O
The second case provides the main contribution to the sum.

Lemma 3.7. Let a < x'~1/618108= wyith w(a) = k — 1 such that all primes ¢ = 3 (mod 4)
dividing a have v, even. Let a € S,. Then

/ z(log, x)°
Z 1< (logy ) .
= [allog )
=1 (mod (1+i)3)
alr—1

(m—1)/a prime
uniformly over all a as above and o € S,,.

Proof. If m = 1 (mod «), then 7 = 1 + af for some 5 C Z[i]. Thus g = %1’ and so
18] < ﬁ Let A denote the sequence of elements in Z[i] given by

{p+am) 1o < )

Define P = {p C Z[i] : ||p|| < z} where z is a parameter to be chosen later. Then, in the
notation of Theorem 2.1,

!/
> 1 < S(A,P) +0(z).
7|l <z
w=1 (mod (1+4)3)
alt—1
(m—1)/a prime
Here, the O(z) term comes from those 7 € Z[i] such that both 7 and (7 — 1)/« are primes
of norm less than z.
For u C Z[i], write Ay, = #{a € A:a=0 (mod u)}. An element a € A is counted by
A, if and only if a generator of u divides a. Thus, by familiar estimates on the number of
integer lattice points contained in a circle, A, satisfies the equation

21z v(u) Vi
o= Tl ol O i)
where
v(u) =#{f (modu):(1+af)=0 (modu)}.
We apply Theorem 2.1 with
2nx v(u)

X=— and ou)=—2=.
Tl )= T
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With these choices, we have
NI
r(u) = O(V(U.)—).
(el el )21

Then, for any even integer m > 0,

@ siar =1 11 (7)o 2 epie)

lIpll<z ulp
w(u)<m
X
~o(fa 2 o),
ulp
w(u)>m

where P = [[,cp p-
For a prime p, we have v(p) = 2 if @« # 0 (mod p) and v(p) = 1 otherwise. Therefore,
the product in the first term is

I () IO )

Ipll< Ipll<
i) pl(a)
2 -1
(-m) T (o) L o
= 11 I (t-7p) <
< L Jol
pize ~ Pl i Ioll (log )2 ()
plla

where in the last step we used Proposition 2.3.

1
Choose z = x2000es22)?  Then our first term in (4) is

z(logy x)*
®(a)(logx)?
Recall that [|a| = a, and a < 2!'71/6182% Since ®(a) > ||a||/log, x (analogous to the
minimal order for the usual Euler function, c.f. [HW00, Theorem 328]), the above is

z(log, x)°
lvl[(log )
We now show that this “main” term dominates the two O-terms uniformly for o € .S,

and a < x'7Y/6l°822  For the first O-term, we begin by noting that v(u)/||u/|'/? < 1.
Then, taking m = 10|log, ], we have

> e <2 (") < Zﬂ < 2w () < a0,

ulP k=0
w(u)<m

where 7 (z) denotes the number of prime ideals p C Z[i] with norm up to z. Therefore,

the inequality
w1/2+1/20 logy

#(10g, 7)°
|l (log x)? [[a][+/2
holds for all a with ||a < z!71/61822 a5 desired.
Next we handle the second O-term. The sum in this term is
v(p)y®
sy (X T
2w 5 2
ulB s2m lIpll <=z
w(u)>m
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Observe that, by Proposition 2.3, we have

Z v(p) < 2log,x + O(1).

ioz- 1ol

Thus, by the ratio test, one sees that the sum on s is
1 m

Using Proposition 2.3 followed by Stirling’s formula, we obtain that the above quantity is

1 2el O(1)\ 10[log; =]
(210g2x+0(1))m< ( elogy x + ( )) g

m! - 10|log, x|
< <€> 9logy x < 1
5 ~ (logx)5
So the second O-term is
x
L T
]| (log )°
and this is certainly dominated by the main term. O

From Lemmas 3.6 and 3.7, we see (2) can be rewritten

z(log, )° Sl x
N, « 92/
kS (log )2 Z a +O(logAgy>’

a<gpl—1/6loggx
w(a)=k—1

noting that ||«|| = a for all @ under consideration and all a € S,. We are now in a position
to bound N, from above in terms of k.

Lemma 3.8. We have

S 15 omr s00)
a<zl—1/6logz N (k—1)!
“w(a)=k-1

Proof. We have already seen that the size of S, is [],,=1 (moa 4)(tp + 1), Where v, is
defined by p* || a. Recall that in the current case, each prime p =3 (mod 4) dividing a
appears to an even power. Therefore, we have

S, 1 Sy Sy o
(5) > ’a‘g(k_l)!< 3 ’p£|+ 3 %H}(n) .

a<lz pl<z p**<z
w(a)=k—1 p#3 (mod 4) p=3 (mod 4)

Note that |S,x| = 1 for each prime p = 3 (mod 4). Thus we can absorb the sum
corresponding to these primes into the O(1) term, giving

(6) > |i“|<<(k_11)!< 3 'i@euou)) .

a<lz pegz
w(a)=k—1 p#3 (mod 4)
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Now
| Spe | (+1
> = 2 o
p<z p p'<z p
p#3 (mod 4) p=1 (mod 4)
2
= ) =+0@)
p<z p
p=1 (mod 4)
= log, z + O(1).
Inserting this expression into (6) proves the lemma. O

3.2. Finishing the upper bound. We have shown so far that
z(logy z)®  (logyz + O(1))F!
(logz)? (k—1)!
We now sum on k& > vylog,z for fixed v > 1 to complete the proof of Theorem 3.1.

(The statement corresponding to 0 < 7 < 1 may be proved in a completely similar way.)
Again using the ratio test and Stirling’s formula, we have

(logy x4+ O(1))** elogy =+ O(1) 17"
N S

N, <

k>~vlogy

[y 1logs z]
1 2 Ly log, z]
<(Svo(i5)) < (97 < togayen

log, v
Thus, we have obtained an upper bound of

z(log, x)°
(log x)2+’y logy—"’

<y
as desired.

4. A LOWER BOUND

Theorem 4.1. Consider £ : y*> = 2 — x and fix v > 1. Then

T
#{p < v w(#HE(F,)) > ylog,x} > (log z)2+7legr—=7+o(1)”

The same statement is true if instead 0 < v < 1 and the strict inequality is reversed on

the left-hand side.

Our strategy in the case v > 1 is as follows. As before, we write #E(F,) = |7 — 1|,
where 7 =1 (mod (1 +4)?) and p = 77. Let k be an integer to be specified later and fix
an ideal s € Z[i] with the following properties:

(A) (1 +4)° ) K

(B) w(s) =

(C) P+(H$H) < gl/100vIo8 7

(D) Each prime ideal p | s (with the exception of (1 4 7)) lies above a rational prime
p=1 (mod 4)

(E) D1st1nct p dividing s lie above distinct p

(F) s squarefree

Here P*(n) denotes the largest prime factor of n. Note that we have w(s) = w(||s]|). First,
we will estimate from below the size of the set M, defined to be the set of those 7w € Z][i]
with ||7|| < x satisfying the following properties:
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(1) m prime (in Z[i])

(2) ||| prlme (in Z)

(3) m=1 (mod s)

(4) P <||7|r|5”1||> < /100y logy z

Here P~(n) denotes the smallest prime factor of n. The conditions on the size of the
prime factors of ||s|| and || — 1||/||s]| imply that each 7 with ||7|| < 2 belongs to at most
one of the sets M. If k is chosen to be greater than vlog, x, then carefully summing
over s satisfying the conditions above yields a lower bound on the count of distinct 7
corresponding to p with the property that w(#E(F,)) > k > vlog,z. The problem of
counting elements m and 7 with p = 77 is remedied by inserting a factor of %, which is of
no concern for us.
More care is required in the case 0 < v < 1, which is handled in Section 4.3.

4.1. Preparing for the proof of Theorem 4.1. Suppose the fixed ideal s is generated
by o € Z[i]. We will estimate from below the size of M, using Theorem 2.1. Define A to
be the sequence of elements of Z[i] of the form

-1
{W ||| < @, m prime, and 7 =1 (mod 0)}.
o

Let P denote the set of prime ideals {p : [|p|| < z}, where z := !/?71°827 Tt P := ] . p.
If =1 =0 (mod p) implies ||p|| > z, then all primes p | ||| have p > /100762 Note
also that if a prime 7 € Z[i], ||7|| < x is such that ||7|| is not prime, then ||| = p? for
some rational prime p, and so the count of such 7 is clearly O(y/x). Therefore, we have

#Ms > S(A,P) + O(Va).

Lemma 4.2. With M, defined as above, we have

bz B o 5 ) oy ) v

5 log z)
w(u)<m
where r(v) = ]I:If((:)) —m(x;0,1)| and ¢ > 0 is a constant.

Proof. First, note that we expect the size of A to be approximately X := 4L1 =2 Write
Ay, =#{a € A:u|a}. Then

Ay = X(u) + r(us),

where §(u) = «1?((115 and r(us) = |4f{:1((fﬁ)) —7(z;us,1)]. By Theorem 2.1, for any even integer

m > 0 we have

_ Li(z) B D(s) .
S(A,P)=4 (o) ”EZ (1 @(pﬁ)) +0< %ém| (u5)|>
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Using Proposition 2.3, we have

T (= 5) = IL(~5) JLC )

Ipll <= Ipll <=
st p‘s
1 1
=11 (1——> 11 (1——2>
[Ipll<z Hp” llpll<z (Hp” - 1)
pts
1 logyx
logz logax’

Take m = 14|log, z|. We leave aside the first O-term and concentrate for now on the
second. This term is handled in essentially the same way as in the proof of the upper
bound: The sum in the this term is bounded from above by

1 s
> (X aw)-
s>m llpll<z
By Proposition 2.3, we have
>~ d(p) < logyw+ O(1).
lpl<=

Now, one sees once again by the ratio test that the sum on s is

m

< (3 6)" < llogy+ O(1)"™

Thus, by the same calculations as in the proof of Theorem 3.1, the second O-term is
Li(x)
®(s)(log )’

completing the proof of the lemma. U

<

We now sum this estimate over ¢ in an appropriate range to deal with the O-terms
and establish a lower bound. Here, the cases v > 1 and 0 < v < 1 diverge.

4.2. The case v > 1. The argument in this case is somewhat simpler. Recall that
s is chosen to satisfy properties A through F listed below Theorem 4.1; in particular,
w(s) = k for some integer k and P*(||s||) < 2!/10071°e22  Choose k := |ylog, x| + 2.
Since w(||s||) = w(s), we have that ||s|| < z#/100710g22 < 21/10 A Jower bound follows by
estimating the quantity

M= "#M,,

where the prime indicates a restriction to those ideals s C Z[i] satisfying properties A
through F mentioned above.

Lemma 4.3. We have

zlog, z(logy x + O(logs z))*

M> k!(log x)?

Proof. Since 3., 1/®(s) < log z, the second O-term in Lemma 4.2 is, upon summing

on s, bounded by a constant times Li(z)/(logz)?!. The third error term, O( /), is
therefore safely absorbed by this term.
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We now handle the sum over s of the first O-term. We have |r(us)| = |w(z;us, 1) —4%].
We can think of the double sum (over s and u) as a single sum over a modulus ¢, inserting
a factor of 7(q) to account for the number of ways of writing q as a product of two ideals
in Z[i]. (Here, 7(q) is the number of ideals in Z[i] which divide g.) Recalling our choice of
m = 14|log, x|, we have

‘ Li(x)
X bl Y |rma ) - g )

lls]|<zt/10 ulP llall<z2/5
w(u)<m

The restriction ||q|| < 22/° comes from ||s| < 21/ and |Ju]| < 2™/50710822 < 228 yecalling
m = 14|log, x| and v > 1. Now, for all y > 0 and nonzero i C Z[i] we have 7(y;i,1) <
y/|i]|; indeed, the same inequality is true with 7 (y;1, 1) replaced by the count of all proper
ideals = 1 (mod i). Thus

‘ _,Li(z) x
)W(x,q,l) 4¢(q) ’ < 3(q)"

Using this together with the Cauchy-Schwarz inequality and Proposition 2.2, we see that,
for any A > 0,

Z ’7‘(’(1‘; q, 1) - 42)1((;;; |T(C|) < Z |7T<:Ij‘; q, 1) — 4%‘1/2 (@L)) 1/27'(0])

d
llall<a2/5 llall<a2/5 (q) (q
7(q)%\ 1/2 x 1/2
< |\x )
( q<212/5 <I>(q)> <(1ng)A>

Z%< H< HH>

< exp{ Z ﬁ} < (log z)™.

lIpl|<z2/°

Collecting our estimates, we see that the total error is at most z/(log x)*/272, which is
acceptable if A is chosen large enough.

For the main term, we need a lower bound for the sum
ro1
7 M f— —

Let I = (e(og22)*/k 21/10%) " Define a collection of prime ideals P such that each p € P
lies above a prime p = 1 (mod 4), each prime p =1 (mod 4) has exactly one prime ideal
lying above it in P, and ||p|| € I. We apply Lemma 2.4, with the y; chosen to be of the
form 1/®(p) with p € P, obtaining

1 / 1
®  war . 2 ST

s:p|(s/(144)3) = peP

<Z<p ) _1<1_ (’fgl)(SLlQ)%ZP@(L)Q),

peP
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where )
Sl == Z = -
= 2(p)

By Theorem 2.3, S; = 1log,z — 2logyx + O(1). This introduces a factor of 7+ to
the right-hand side of (8), but this is of no concern: If each of the k prime factors of s,
excluding (1 + i), lies above a distinct prime p = 1 (mod 4), then there are 2¥~! such
ideals s of a given norm. Thus, if we extend the sum on the left-hand side of (8) to range
over all s counted in primed sums (cf. the discussion above Lemma 4.3), we obtain

k-1

k—1
ro1 2 1
> — —
ES @(s)_(k—l)!(QIngx 210g3x+0(1))

k—1 1 1
(- () ) S )
( 2 St ep D(p)
The quantity (kgl) is bounded from above by [ylog, x]%, and the sum on 1/®(p)? tends
to 0 as © — oo. Therefore,

b (’“;1)(%)2@21_47@@(;2 23

peP peP

for large enough z, and so

xlogy x Z/ 1 s ¥ log, z(logy  + O(logg x))F~*
(logz)? < ®(s) (k —1)!(log z)? ’

as desired. O

With k£ = |vylog, x| + 2 and by the more precise version of Stirling’s formula n! ~

V2mn(n/e)", we have

(logy o + Oflogg )" 1 ( log, & + O(log :v)) s ]
(k—1)! V/1og, | log, x|

1 1 [v1og; z]
S )
log, z \ Y log, =

= (log x)vﬂlogvﬂ(l)_

This yields a main term of the shape
x
(log x)2+'y logy—~+o(1)’

which completes the proof of Theorem 4.1 in the case v > 1.

4.3. The case 0 < v < 1. Above, we used the fact that if 7 — 1 is divisible by certain
s C Z[i] with w(||s||) = k, then || — 1|| will have at least k > ~ylog, z prime factors. The
case 0 < v < 1 is requires more care: We need to ensure that the quantity || — 1|/|s]|
does not have too many prime factors.

Lemma 4.4. For any s C Zl[i] satisfying properties A through F' listed below Theorem
4.1, we have

4{reM :w(||7r—1||> log, x

<K .
) 7 Togye’ < [sllog o)
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Upon discarding those 7 counted by the above lemma, the remaining 7 will have the
property that w(||m — 1||) € [k, k + log, 2/ log, x]. Choosing k to be the greatest integer
strictly less than ~ylog, x — log, 2/ log, = ensures that |7 — 1|| < vlog, z.

Proof of Lemma 4.4. We begin with the observation that, for any s C Z[i] under consid-
eration and m € M, we have |7 — 1||/||s]| < 2x/||s||. Therefore, we estimate

2x 1
Z 1§M Z Tal

lall< 22 lafl< 22
w(|la]l)>logy x/ logy x w(llal)>logy x/log, =
P7(||a”)>xl/100-y logo x P7(||a||)>x1/100-y logg x

Noting that w(]|a||) < w(a) for any a C Z[i], by Theorem 2.3 and Stirling’s formula, we

have
1 1
> Tal = Z Tlal

lall <75 lafl< 22
w(|lall)>logy z/logy = w(a)>logy x/logy x
P~(||a]|)>xz!/100log2 = P~ (||a||)>z1/1001082
1
< > oa X Z )
€>10g2x/10g4x 1/10010g21<”pH ﬁ
elogs x4+ O(1)
< ( ) .
2 ;

£>logy x/logy

For each ¢ > log, x/log, z, we have (elogsxz + O(1))/¢ < 1/2. Thus

Z (elogg T+ O(l))f < ( elogs x + O(1) ) [logy @/ logy z|+1
l |log, z/log, x| + 1

>logy x/ logy x

1 I
< (W) e & e 2logrwlogs a/logy @
2

This last expression is smaller than (logx)~#, for any A > 0. Therefore, for any fixed

A>0,
Ir— 1]\ _ logya .
: > . J
#Hme M. ”( B )~ logya) < alloga)?

Write

M. ={meM,: w(
Lemmas 4.2 and 4.4 show that #M. satisfies
, xlog, x
>0 027
#Mz e g o( > ]r(u5)|)

u/P

w(u)<m

+ O(@%) + O(W) +O0(Vz),

for any A > 0. Here, all quantities are defined as in the previous section. Just as before,
we sum this quantity over s C Z[i] satisfying conditions A through F listed below Theorem
4.1. Letting ' on a sum indicate a restriction to such s, we have, by the same calculations
as before,

HW—W)<b&x

sl -/~ loggz™

zlogy z(log, © + O(logs )1

(k —1)!(log x)? ’

M >
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where ,

5
Recall that k is chosen to be the largest integer strictly less than v log, x — log, x/ log, z;
then by Stirling’s formula,

(logy * + O(logz x))*! S 1 <elog2 z + O(log;, x))k—l
(k—1)! \/1og, E—1

1 1 ~vlogs x—logs x/log, x—1
SRR T L

\/1ogy x \7Y logy x
> (log x)vlog vy=y+o(1)
A final assembly of estimates yields Theorem 4.1 in the case 0 < v < 1.
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