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Nine Years of Cosmic Ray Anisotropy

1. Introduction

With the recent discovery of galactic gamma-ray Pevatrons [1, 2] we are getting closer to the
identification of the cosmic ray sources contributing to observations up to the knee. Traditionally,
the measurement of cosmic ray energy and mass composition has been utilized by astrophysicists
to infer global properties about their sources and their long propagation journey across the galactic
magnetized medium. Now that their sources may have been identified, it is possible to improve our
knowledge on how cosmic rays diffuse in the interstellar medium. Anisotropy — a property long
observed in the arrival directions of cosmic rays—may provide additional hints linking cosmic rays
to their sources of acceleration and, more likely, to their propagation through the inhomogeneous
interstellar medium. On the one hand, ultra-high energy cosmic rays, whose direction is affected
very little by astrophysical magnetized plasmas, can be used to identify their faraway extra-galactic
sources [3, 4]. On the other hand, the arrival direction distribution of lower energy cosmic rays, of
galactic origin, may be used to unfold the properties of the interstellar medium through which they
propagated [5].

Ground-based experiments have observed the cosmic rays’ anisotropy since the seventies,
but in the last two decades a new generation of observatories has provided unprecedented and
detailed observations over a wide energy range (TeV-PeV) [6–33]. The anisotropy is small (of
order of 10−3 in relative intensity) and it changes with energy as if a transition between two distinct
causes occurs around 100 TeV. Observations also show that the anisotropy has a complex angular
structure, spanning from the large-scale dipole and quadrupole (thought to be associated with
scattering off magnetic turbulence leading to pitch angle diffusion [34]) down to smaller scales
with relative amplitude smaller than 10−4 (thought to be linked to non-diffusive processes within
a scattering mean path [35, 36]). While new, large, ground-based experiments under construction
(LHAASO [37]) and under design (SWGO [38, 39], IceCube-Gen2 [40]) will provide a leap in
our anisotropy observations, existing experiments are still improving the quality of their data and
analyses.

This work presents an update of cosmic ray anisotropy measurements in the energy range of
10 TeV to a few PeV, observed by the IceCube Observatory using the 577 billion events collected
from 2011 to 2020. The unprecedented stability of the data sample, acquired by using the same
experimental configuration over time and by improving analysis techniques, makes it possible for
the first time to probe into time variabilities of the anisotropy with minimal systematic uncertainties.

2. Data Analysis

This work is designed to serve as an update to previous anisotropy studies completed in
IceCube [26–28, 30, 31]. We will therefore first highlight changes and improvements unique to this
study before providing a brief overview of the overall method.

The dataset for this work consists of 577 billion cosmic ray events, collected over nine years
by the in-ice component of IceCube. In addition to being >80% larger than the previous six-
year publication [30], these events were all collected in the completed 86-string configuration,
allowing for unprecedented statistics and stability in systematic checks. The 9-year time frame
brings the observation period much closer to covering an 11-year solar cycle. A consistent detector
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configuration also means we can use a single simulation dataset in the creation and study of energy-
dependent skymaps. In this study, we use improved simulations featuring post-LHC CORSIKA
SIBYLL 2.3c and a factor of 10 increase in statistics. The simulations include an improved
description of the detector and of the optical properties of the instrumented ice. The Monte Carlo
data is weighted to a Gaisser-H4a [41, 42] composition model.

Figure 1: Median true energy of cosmic ray primary
particles (from simulation) as a function of recon-
structed zenith (\reco) and the number of DOMs trig-
gered (#channel).

Aside from the aforementioned improve-
ments, the analysis method was largely kept
consistent with previous analyses [26–32] to al-
low for direct comparison of the results. The
maps that follow rely on the comparison of de-
tector data to a background map that simulates
the detector response to an isotropic sky. The
background map itself is not isotropic, but must
account for real-world factors, including detec-
tor response as a function of atmospheric depth,
and preferred azimuthal acceptances due to de-
tector configuration. To create the background
maps, we use the time-scrambling method de-
tailed in [27]. In short, we store the arrival
times of all events within a time-scrambling
window. Then, for each event, we create 20
background events, each with a weight of 1/20
and a time randomly selected from the time-
scrambling window. By using local arrival co-
ordinates and actual event times, the background map reflects the local angular and temporal
event distribution seen by the detector. However, by choosing times from within a 24-hour time-
scrambling window, the sidereal locations of the background events are randomly distributed in
right ascension, producing a uniform distribution folded with the detector response.

All maps are created using HEALPix1 software, which bins the sky into equal area bins aligned
along declination bands. Setting the parameter #side = 64 produces bins with an angular size of
(0.84◦)2. The relative intensity X� is then calculated as a fractional deviation of the data # from
background 〈#〉, using X� = (# − 〈#〉)/〈#〉 on a pixel-by-pixel basis. Significance values are
pre-trial, and calculated according to Li & Ma [43]. The maps are smoothed by assigning to each
pixel the combined value of all pixels within a given angular radius, a process known as “top-
hat" smoothing. For maps created from the full dataset, a 5◦ smoothing radius is used, roughly
corresponding to the ℓ-value at which the power spectrum for IceCube is consistent with noise. For
maps split by energy, a 20◦ smoothing radius is used. This value was previously selected in order
to maximize statistical significance while preserving our ability to observe large-scale structural
changes.

To split the events into energy bins, we consider two parameters correlated with primary
energy: the number of Digital Optical Modules (DOMs) hit (#channel), and the reconstructed zenith

1https://healpix.jpl.nasa.gov

3



Nine Years of Cosmic Ray Anisotropy

angle (\reco). While #channel is a simple counter that does not take into account track location or
detector geometry, it should still, on average, increase with primary energy. The zenith-dependence
of primary energy arises from the atmospheric depth the shower must penetrate before reaching the
detector; lower-energy showers are filtered out at zenith angles closer to the horizon, their mean
particle energy dropping below the detection threshold before the shower reaches the detector. It
should be noted that, because IceCube is only sensitive to the muonic component of air showers,
there are inherent limits on the energy resolution. As a result, while the energy bins are statistically
independent, the energy distributions of adjacent energy bins have significant overlap. Using
simulation, all events were binned in log10(#channel) and cos(\reco). Figure 1 shows the resultant
median energy value for each bin. After smoothing this table using splines (see method in [44]),
the #channel and \reco values of each event were used to place it in an energy bin.

3. Results

A study of the sidereal anisotropy using all events is shown in Fig. 2. These maps are consistent
with previous studies — at both large and small angular scales, we see the same features at the
same locations. This study does yield higher pre-trial significance values, as expected given the
increased sample size.

Figure 2: Relative intensity (left) and significance (right) maps, shown in equatorial coordinates for all
data (top) and with best-fit dipole and quadrupole terms subtracted (bottom). The dashed line indicates the
galactic plane, the triangle marks the galactic center.

To better visualize any potential time-dependence of the anisotropy, we can look at a one-
dimensional projection of the data along right ascension. To produce Fig. 3, the data was split
by calendar year, from May 15th of the listed year to May 14th of the following. The shift from
detector to calendar years provides a better grasp on our systematic uncertainties. The length of
detector years is somewhat arbitrary, with some being much longer than others. When a time period
significantly greater or less than 365 days is considered, the Compton-Getting effect due to the
Earth’s motion around the Sun does not cancel out. In the frequency domain, we are concerned
with the contamination of the 366-day sidereal year by sidebands from the 365-day solar year. To
determine the magnitude of this effect, we consider a 364-day “anti-sidereal" year [11]. By shifting
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to calendar years, the influence of any solar signal on the sidereal frame is minimized, visible as
a diminished signal in the anti-sidereal frame. As a result, the systematic error bars, which once
were much larger than the statistical errors, are now effectively equivalent. With the newly reduced
systematic uncertainties and extended observation time, there appear to be time-related shifts in
several of the right ascension bins. Studies are currently underway to determine the significance of
the apparent effect, incorporating a recently-collected tenth year of data.

Figure 3: A one-dimensional projection of relative intensity binned in right ascension, split by detector
year. The small, shaded regions around each point represent systematic uncertainties, calculated using
the amplitude of the best-fit dipole to the anti-sidereal distribution for each year. The solid error bars are
statistical.

The new simulation yields energy-dependent maps that are also consistent with previous
results, as shown in Fig. 4. Large regions of excess and deficit (+90◦ and +270◦, respectively) fade
in strength with increasing energy, replaced by a dominant deficit near a right ascension of +90◦

around 100 TeV. While the locations and relative intensities of these structures are consistent with
previous studies, the increased sample size pushes several of the features in the highest-energy map
to > 3f (see Fig. 4). The significance of the features present in the 1-3 PeV map also changes;
studies are underway to determine whether this is a time-dependent result, or an effect of the new
simulation used to create our energy bins.

4. Conclusions

We present several improvements to previous IceCube analyses of the observed anisotropy
in cosmic ray arrival direction. Nine years of data collection with the 86-string configuration of
the in-ice component of IceCube provide an unprecedented sample size of 577 billion events. We
correspondingly see large- and small-scale structures in the all-event sample at higher significance,
with the morphology of these maps largely unchanged. A study of the energy-dependence yields
a similar result; while the observed structures and transitions remain consistent, we can report
features in our highest-energy map (>3 PeV) at a pre-trial significance of over 3f. Changes to the
energy maps are a function of both enhanced statistics and improvements to event simulation.
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Figure 4: Relative intensity maps for each energy bin (left, top right) featuring top-hat smoothing with a 20◦

angular radius. Both the features present and the change in structure are consistent with previous work. The
scale is changed at 1 PeV to avoid saturation. Also shown are significance maps for the two highest energy
bins (bottom right).

Use of a consistent detector configuration also enables the study of data by calendar year as
opposed to detector year. Systematic uncertainties in the sidereal anisotropy arise from interference
with the solar frame, an effect that should largely cancel over a calendar year. As a result, our sys-
tematic uncertainties in the time-dependent study of the sidereal anisotropy (Fig. 3) are significantly
reduced. As IceCube approaches 11 years of data collection in its 86-string configuration, this work
should enhance our ability to search for any effect of the 11-year solar cycle on the observed cosmic
ray anisotropy.
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